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The first Al boom: expert systems
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Limitations of expert systems: Al winter

knowledge acquisition bottleneck data integrity

NO Management of uncertainty



New Al spring: machine learning

Without Machine Learning With Machine Learning
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uncertainty management noise robustness

learning from data



Current Al boom: deep learning

Machine Learning
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Deep learning successes
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Limitations of deep learning

- Data hungry: need tons of examples to learn
- Opaqueness: learn a black box model

 Lack of Verifiability: no formal guarantees on
performance

» Lack of Flexibility: problems in adapting to novel
information



(in)Famous DL failures

 Microsoft’s Al chatbot corrupted by Twitter Trolls
iInto a pro-nazi mouthpiece

* Photo of Chinese billionaire on an ad on a passing
bus wrongly identified as a jaywalker

» Google photos labels two black people as ‘gorillas’

- Amazon Alexa places an order for 170$ dollhouse,
when a six-years old asked for one



Solution: learning + knowledge
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Solution: learning + knowledge
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Solution: learning + knowledge

Human-level Al
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Plenty of approaches exist

Bayesian logiC  (Deep) Problog
Probabilistic logic learning

Stochastic logic programs  Prism

Markov logic networks Probabilistic Soft Logic
Logic tensor networks

Statistical learning +

Neural Turing machine fuzzy logic
Neural reasoning Semantic-based
Neural theorem proving regularisation

Differentiable neural computer



ProblLog

(De Raedt & Kimmig, 2015)

0.2::red.

flip(coinl).
flip(coin2).

0.3::heads(coinl).
0.2::heads(coin2).

side(X,heads) :- heads(X).
is_heads :- flip(X), side(X,heads).

win :— 1s_heads.
win :- \+is_heads, red.

query(win) .



DeepProblog

(Manhaeve et al, 2018)

0.2::red.

neural network taking coin image as
flip(coinl). iINnput and returning probability
flip(coin2). distribution over flip outcomes

70.3: :heads(coinl).
70.2: :heads(coin?2).

nn(pred_side, X, [heads, tails])::side(X,heads);side(X,tails).
is_heads :- flip(X), side(X,heads).

wln :— 1s_heads.
win :- \+is_heads, red.

query(win) .



Semantic based regularisation (SBR)

(Diligenti, Gori, Sacca, 2017)

o number of training error loss
regularisation term tasks 9
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Deep SBR (Lyrics)

(Marra et al., 2019)
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My research: learning with constraints

» Learning + constraint solving

* to deal with complex background knowledge

* Interactive machine learning

» to keep the user in the loop of the learning process

- Constructive machine learning

* I.e. learning to synthesise novel entities from scratch

- Learning constraints

» to automatically extract knowledge from data



Prediction as constrained optimisation

given part defining input/ unknown part defining

context (possibly empty)\’u’fpl?dution

* —
Yy = algllax <w7 QO(ZE‘, Y
Yy c yfea,sible
feature function
set of constraints defining relevant
defining feasible space scoring function features

defining solution quality



Learning paradigms

» Structured-output learning

» oracle provides best output for given input

* Preference elicitation

» oracle provides feedback on candidate output



Structured Learning Modules Theories
[Artificial Intelligence Journal, 2017]

INnput template output

0

0 1 0 1
- Left: 8x8 B/W bitmap image of an “A”
- Middle: vectorial representation of an “A”

* Right: vectorial representation fitted on the image



Problem formalisation

* Input: set of pixels belonging to character

- Output: set of m directed segments (represented by their begin
and end coordinates)

- Score:
argmax (coverage(x,y), ortentation(y)) w

Yy

» output should cover character pixels

» output should “resemble” corresponding vectorial template



Coverage

- Coverage is fraction of covered pixels

CO”U@?“CLge T y ’ E ]1 Covered
peEP

* Pixel covered by at least one segment

covered(p) := \/ covered(p, )
i€[1,m]

* Pixel coverage formula depends on segment
orientation



Orientation

» Contains features about orientation of segments

* E.g. An “A” could have a vectorial representation like:

increasing(l

increasing(2

horizontal(4

(1)
(2)
decreasing(3)
(4)
(5)

decreasing(d

> > > >

head2tail(1l,2)
head2tail(2,3)
head2head(

(

> > > >

,4)
head2tail(4,5)

3
4,

1

0

4
1 5

0

- Character template is not available at test time

» Orientation features represent all possible orientations
and connections for segments



Scoring function

» Scoring function weighted combination of coverage and
orientation features

"(increasing(i), decreasing(i), right (i),
—_—

for all segments 12

h2t(i, j), 12h(i, j), h2h(i, §), 12t(i, j),
_—

for all segments 2, 7 with ¢+ < 3

SCOTE (— W

coverage)

» Appropriate weights for the character should be learned



Structured-output learning problem

margin term penalty term

\

1 5 () penalty for not
minw € — HwH + — g 52 satisfying constraint
; ) n \
subject to:

w—r(w(xia yz) T ¢($za Y )) A(y’w Y ) gz
/\v’i=1,...,n;y’7éyi T

difference between correct and

correct solution better than any incorrect one .
INcorrect output

Problem: exponential number of constraints!!



Structured-output learning problem

margin term penalty term

\

1 5 () penalty for not
minw € — HwH + — g 52 satisfying constraint
; ) n \
subject to:

wT(¢($ia yz) T ¢($za Y )) A(yza Y ) gz
/\v’i=1,...,n;y’7éyi T

difference between correct and

correct solution better than any incorrect one .
INcorrect output

Solution: iterative approaches (cutting plane, Frank-\Wolfe)



Results for “A”
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Results for “B”

training set

test set




Results for “C”

training set

» REa

b

N,
s f
L
Bl
- U

8
bt

L AT



Results for “D”
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Results for “E”
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Pyconstruct:
a library for declarative structured-output learning

[IJCAI 2018]
Pyconstruct

Pyconstruct is a Python library for declarative, constrained, structured-output prediction. When using Pyconstruct, the
problem specification can be encoded in MiniZinc, a high-level constraint programming language. This means that domain
knowledge can be declaratively included in the inference procedure as constraints over the optimization variables.

Check out the Quick Start guide to learn how to solve your first problem with Pyconstruct.

Have a look at the docs and the reference manual too, to learn more about it!



Going deep:

Deep declarative structured-output learning

Convolutional Neural Network
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Experimental results

Test loss
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% of errors on test set

Deep nets fail to learn semantics
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Constructive preference elicitation

NETFLIX

- Preference elicitation ey —
SeIeCtS the mOSt Congratulations! Movies we think You will '

p referred item in a Ada moviesto your Queus, or Rate ones you've seen or even better supgestions.
catalogue of candidates

(LAKES)
VARENNA

A
., o= - Constructive preference
elicitation aims at
synthesising the most
preferred configuration
given a set of constraints




Examples: assembly

assemble a PC

modify a recipe



Examples: layout synthesis
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Examples: the ultimate cocktall machine!




Plain preference elicitation
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Constructive preference elicitation

Y i
S apeprgey il 3




learning user utilities

» User utility as weighted combination of item features

weights \ / given context
Uz, y) = (w, p(z,y))

/ \ candidate output

feature function

- Recommendation as utility maximisation

*

y" = argmax (w, @(,y))

yeyfeasible\

* Interactive approaches to learn utility weights

feasibility constraints



Leveraging proactive users
[ECMLPKDD 2018, RECSYS 2018]

PROBLEM

» Most interactive approaches ask for pairwise (or
setwise) preferences

» The set of candidates is predetermined

SOLUTION

 Ask user to improve current solution (coactive learning)

- Improvements over features or objects



Coactive learning

(Shivaswamy & Joachims, 2012)




Coactive learning (CL)

procedure CL(T)
w' 0
fort=1,...,7 do
Receive context ' from the user

Yy al'gllax, v (w*, p(z",y))
y" < QUERYIMPROVEMENT(z?, 3/*)

w' e w' + (2t y) — ety



Layout synthesis: user interaction

feature manipulation

object manipulation

. 2
by &




Layout synthesis: furniture arrangement

Initial Intermediate

Café

Office
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L ayout synthesis: floor planning

diate




Leveraging user explanations
[AAAI, 2017]

PROBLEM
- Most interactive learning approaches assume
predefined feature space

» Users often realise requirements during process

SOLUTION

- Identify when feature space is insufficient

 Ask user to explain improvement (coactive critiquing)



Solution: coactive critiquing

eliciting local improvements (coactive learning)




Solution: coactive critiquing

asking for explanations if needed (critiquing)

"T'm allergic to
@} + ﬁshbon%s!"



Coactive critiquing algorithm (CC)

procedure CC(p!, T)
w! «— 0, D+
fort=1,...,7T do
Receive context x* from the user
y' < argmax, ¢y (w', ¢’ (2, y))
y' <+ QUERYIMPROVEMENT (", ")
D+ DuU{(z",y",7")}
if NEEDCRITIQUE(D, ¢') then
p < QUERYCRITIQUE(z", y*, ")
@'+ ' op]
w’ < w'’ o [0]
Wit  wt + @t (zt, gt) — pt(at, yt)
i



Experimental results:

CC vs CL
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Going deep:

Dealing with unknown features

PROBLEM

- Most preference elicitation approaches assume
predefined feature space

- It is often difficult for users to provide explicit features

SOLUTION

 Learn features in coactive mode (deep coactive
learning)



RelLU Neural Networks
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Learn objective features

objective features

. iNput attributes
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» Train a NN to predict ‘objective” features from

, Spicy)

attributes (e.g. sweet

» Train with feedback from multiple users (i.e.

“objective” as average over users)



From objective features to user utility

user utility

subjective features

objective features

» Compose with user-specific component:
- from objective to subjective features

- from subjective features to utility score (preference)



Optimize over input to get recommendation

user utility

RelLU activations
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Coactive feedback backpropagation

[ would like it more spicy
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Smart Plan: navigation

PlanN. 10/ 11

Minutes + SMS
€& PREVIOUS NEXT =
20 € o

Landline
Internet: BROADBAND (Fiber) Telephone: NO Base price

30 € o 5 8 € / month
Multimedia :

TV Streaming Apps & Games Base price
+ 42 € for the first 48 months

. . 15 € /nonw

Spotify Premium

Devices
Smartphone Tablet Base price CHOOSE CURRENT PLAN
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Apple iPhone 8 64GB Apple MacbookAir 13" for 48 months
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Smart Plan: suggesting changes

14 Gigabytes (4G)
-1 [=]

Internet: BROADBAND (Fiber)

==&

TV Streaming

Smartphone

Apple iPhone 8 64GB

Landline
Telephone: No

=) =] [+]

Multimedia
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Spotify Premium
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Devices

Smart TV
Apple MacbookAir 13"

= |SE2 *]

Base price

20 € /nons

Base price

30 € /noms

Base price

15 € snow

Base price

42 € rvos

for 48 months
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58 € /month

+ 42 € for the first 48 months
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Smart Plan: experimental setup

Interactive Session

——  —y— ——

] o,
v

*
Landing Tutorial lteration 1 Ilteration N Questionnaire
page
- Between groups experiment
System | Interface Algorithm group &
- Comparison against pool-based
CC Constructive | Constructive approaches
Cp Constructive | Pool * Pool algorithm: algorit_hm can choose
from (large) pool of options
PP Pool Pool * Pool interface: user can choose from
(small) pool of option




Smart Plan: quantitative results

B PP B PC s CC

)k

« 29% more satisfactory interactions ; - —

—

1
|

Choice of a plan (%) Vlsuallzed plans (N Duratlon (min)

- 3.5 interactions less to satisfactory
plan

« 2.9 minutes less to satisfactory plan




Preference elicitation example: housing

| would like a house In a safe area,
close to my parents and the
Kindergarten, with a garden if there

\are no parks nearby. My maximum |
buaget i SOO’W MAX-SMT formulation
/\ var description var description

y1  has garden y>  has park nearby
y3  crime rate ys  distance from parents
ys  distance from kindergarten

Y ( ﬂy2:>y1) . client hard constraints |
clientsoft s = (y3 < 6;) price(y) < 300000

' constraints T
F — < ' 1
; ¥s (Y4 < 62) . i ya > 64 company hard
i.----------------------ED.% ..... f ..... (_y_§__§__€§_)____j ; y5 > 95 ConStralntS I



housing revisited

| would like a house In a safe area,
close to my parents and the
Kindergarten, with a garden if there

\ are no parks nearby. My maximum
budget is 300,000 euro.

Who Is capable of such a precise
and exhaustive explanation”




Solving an unknown MAT-SMT problem

* exact problem formulation unknown

help!!!

\/\/ - set of candidate catalogue features is
available

« set of candidate constraints over the
features

» true (unknown) utility is the weighted sum
of few constraints over few features

- DM feedback as pairwise preferences
btw solutions



Problem formulation: catalogue features

set of features characterising candidate solutions

feature Description type
U1 house type ord

Yo carden Bool
Y3 garage Bool
U4 commercial facilities nearby Bool
Us public green areas nearby Bool
Ye distance from downtown num
Y7 crime rate num
Y9 public transit service quality index num

Y10 distance from parents house num



Problem formulation: possible predicates

all predicates constructible with candidate features

predicate Description formula
D1 has garden Yo
D9 has garage Y3
D3 has park nearby Us
D4 close to downtown Yo < 01
D5 low crime rate area Y7 < 0o

D6 high quality transit service yg > 03



Problem formulation: possible constraints

all constraints constructible with candidate predicates
(combinations of up to d predicates)

constraint Description formula
U has garden D1

vy cgarden if no park nearby —p3 — pq
(8! good transportation P4 — Pg

if far from downtown
(o garage if high crime rate —ps; — po



User utility

 (Unknown) user utility linear combination of some constraints

» Scoring function linear combination of all candidate
constraints

y* = argmax, w p(y)
* Need to learn the few non-zero weights

» User feedback as pairwise preference btw candidate
solutions



Learning user utility: learning to rank

sparsifying
term penalty term
\ /
MMy, ¢ ||W| ‘1 + A Z fi,j penalty for not

1,7:Yi <Y satisfying constraint

subject to: /

wp(yi) —w o(y;) >1—&;

/W,j:yi<yj \

o minimal distance
match user pairwise preferences



Learning algorithm

* Initialise weights

* While user not satisfied

* run MAX-SMT to find candidate configurations:
y* = argmax, w" ¢(y)

» collect feedback as pairwise preferences:
Yi =Y

» add constraints and solve learning problem:

minwe (Wi +A Y &y

1,7:Yi <Y



% utility loss
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Partially Input Convex Neural Nets (PICNN)

vy
v &y
e
e

N\

* Requirements:
» convex and non-decreasing activations functions
* non-negative weights in z layers

* Results:

 network is convex iny j = mig f(z,y)
ye



PICNN for constructive recommendation

nutrients | ¢

v v
v &y
e
e

N\

iIngredients| y

» Train PICNN to predict ingredients from nutrients



PICNN for constructive recommendation

nutrients | ¢

v v
v &y
e
e

N\

iIngredients| y

* Recommend new product by:

» given a nutrients-ingredients pair and desired nutrients

(&,9) - &7
 get minimal ingredient change giving the desired nutrients
= min f(@y) + Ay, 9)



