On the combination of knowledge and learning

Andrea Passerini

KSEM-2019

The first AI boom: expert systems

symbolic reasoning

knowledge acquisition

knowledge base

Limitations of expert systems: Al winter

knowledge acquisition bottleneck

data integrity

no management of uncertainty

New Al spring: machine learning

uncertainty management

noise robustness

learning from data

Current AI boom: deep learning

Deep learning successes

game playing

Limitations of deep learning

- Data hungry: need tons of examples to learn
- Opaqueness: learn a black box model
- Lack of Verifiability: no formal guarantees on performance
- Lack of Flexibility: problems in adapting to novel information

(in)Famous DL failures

- Microsoft's Al chatbot corrupted by Twitter Trolls into a pro-nazi mouthpiece
- Photo of Chinese billionaire on an ad on a passing bus wrongly identified as a jaywalker
- Google photos labels two black people as 'gorillas'
- Amazon Alexa places an order for 170\$ dollhouse, when a six-years old asked for one

Solution: learning + knowledge

Solution: learning + knowledge

verifiable Al

Solution: learning + knowledge

Human-level Al

DILBERT BY SCOTT ADAMS IT SHOULDN'T HOW LONG WOULD TAKE ME LONG TO IT TAKE YOU TO IT MIGHT DUMB-DOWN A WHAT? TAKE FIVE CREATE ARTIFICIAL COMPUTER TO MINUTES, INTELLIGENCE THAT HUMAN LEVELS. TOPS. IS AS SMART AS HUMANS?

Plenty of approaches exist

Bayesian logic (Deep) Problog Probabilistic logic learning Stochastic logic programs Prism Markov logic networks

Neural Turing machine Neural reasoning Neural theorem proving Differentiable neural computer Probabilistic Soft Logic Logic tensor networks Statistical learning + fuzzy logic Semantic-based regularisation

ProbLog (De Raedt & Kimmig, 2015)

```
0.2::red.
```

```
flip(coin1).
flip(coin2).
```

```
0.3::heads(coin1).
0.2::heads(coin2).
```

```
side(X,heads) :- heads(X).
```

is_heads :- flip(X), side(X,heads).

```
win :- is_heads.
win :- \+is_heads, red.
```

```
query(win).
```

DeepProbLog (Manhaeve et al, 2018)

```
0.2::red.
                                 neural network taking coin image as
                                    input and returning probability
flip(coin1).
                                   distribution over flip outcomes
flip(coin2).
%0.3::heads(coin1).
%0.2::heads(coin2).
nn(pred_side, X, [heads, tails])::side(X,heads);side(X,tails).
is_heads :- flip(X), side(X,heads).
win :- is_heads.
win :- \pm heads, red.
query(win).
```

Semantic based regularisation (SBR)

(Diligenti, Gori, Saccà, 2017)

Deep SBR (Lyrics) (Marra et al., 2019)

My research: learning with constraints

- Learning + constraint solving
 - to deal with complex background knowledge
- Interactive machine learning
 - to keep the user in the loop of the learning process
- Constructive machine learning
 - i.e. learning to synthesise novel entities from scratch
- Learning constraints
 - to automatically extract knowledge from data

Prediction as constrained optimisation

Learning paradigms

Structured-output learning

oracle provides best output for given input

Preference elicitation

oracle provides feedback on candidate output

Structured Learning Modules Theories [Artificial Intelligence Journal, 2017]

• Left: 8x8 B/W bitmap image of an "A"

- Middle: vectorial representation of an "A"
- Right: vectorial representation fitted on the image

Problem formalisation

- Input: set of pixels belonging to character
- Output: set of *m* directed segments (represented by their begin and end coordinates)

• Score:

$\mathop{\mathrm{argmax}}_{y}\left(coverage(x,y), orientation(y)\right)\, \pmb{w}$

- output should **cover** character pixels
- output should "*resemble*" corresponding vectorial template

Coverage

Coverage is fraction of covered pixels

$$coverage(x,y) := \frac{1}{|P|} \sum_{p \in P} \mathbbm{1}(\texttt{covered}(p))$$

Pixel covered by at least one segment

$$\operatorname{covered}(p) := \bigvee_{i \in [1,m]} \operatorname{covered}(p,i)$$

 Pixel coverage formula depends on segment orientation

Orientation

- Contains features about orientation of segments
- E.g. An "A" could have a vectorial representation like:
 - $\texttt{increasing}(1) \land \texttt{head2tail}(1,2) \land$

decreasing(5)

- $\texttt{increasing}(2) \quad \wedge \quad \texttt{head2tail}(2,3) \ \wedge \\$
- $\texttt{decreasing}(3) \quad \wedge \quad \texttt{head2head}(3,4) \ \wedge \\$
- $\texttt{horizontal}(4) \quad \wedge \quad \texttt{head2tail}(4,5) \ \wedge \\$

- Character template is **not available** at test time
- Orientation features represent all possible orientations and connections for segments

Scoring function

 Scoring function weighted combination of coverage and orientation features

Appropriate weights for the character should be learned

Structured-output learning problem

correct solution better than any incorrect one

incorrect output

Problem: exponential number of constraints!!

Structured-output learning problem

Solution: iterative approaches (cutting plane, Frank-Wolfe)

Results for "A"

Results for "B"

Results for "C"

Results for "D"

Results for "E"

Pyconstruct: a library for declarative structured-output learning

[IJCAI 2018]

Pyconstruct

Pyconstruct is a Python library for declarative, constrained, structured-output prediction. When using Pyconstruct, the problem specification can be encoded in MiniZinc, a high-level constraint programming language. This means that domain knowledge can be declaratively included in the inference procedure as constraints over the optimization variables.

Check out the Quick Start guide to learn how to solve your first problem with Pyconstruct.

Have a look at the docs and the reference manual too, to learn more about it!

Going deep: Deep declarative structured-output learning

Experimental results

Deep nets fail to learn semantics

Constructive preference elicitation

Preference elicitation
 selects the most
 preferred item in a
 catalogue of candidates

 Constructive preference elicitation aims at synthesising the most preferred configuration given a set of constraints
Examples: assembly

compose a basket

modify a recipe

Examples: layout synthesis

urban planning

Examples: the ultimate cocktail machine!

Plain preference elicitation

Off-road

Wagon

Track

Muscle Car

Collectable

Hauler

Constructive preference elicitation

learning user utilities

· User utility as weighted combination of item features

Recommendation as utility maximisation

$$y^* = \underset{y \in \mathcal{Y}_{\text{feasible}}}{\operatorname{argmax}} \langle \boldsymbol{w}, \boldsymbol{\varphi}(x, y) \rangle$$
feasibility constraints

Interactive approaches to learn utility weights

Leveraging proactive users [ECMLPKDD 2018, RECSYS 2018]

PROBLEM

- Most interactive approaches ask for pairwise (or setwise) preferences
- The set of candidates is predetermined

SOLUTION

- Ask user to improve current solution (coactive learning)
- Improvements over features or objects

Coactive learning

(Shivaswamy & Joachims, 2012)

Coactive learning (CL)

procedure
$$CL(T)$$

 $w^{1} \leftarrow 0$
for $t = 1, ..., T$ do
Receive context x^{t} from the user
 $y^{t} \leftarrow \operatorname{argmax}_{y \in \mathcal{Y}} \langle w^{t}, \varphi(x^{t}, y) \rangle$
 $\bar{y}^{t} \leftarrow \operatorname{QUERYIMPROVEMENT}(x^{t}, y^{t})$
 $w^{t+1} \leftarrow w^{t} + \varphi(x^{t}, \bar{y}^{t}) - \varphi(x^{t}, y^{t})$

Layout synthesis: user interaction

feature manipulation

object manipulation

Layout synthesis: furniture arrangement

Layout synthesis: floor planning

Leveraging user explanations

[AAAI, 2017]

- Most interactive learning approaches assume predefined feature space
- Users often realise requirements during process

SOLUTION

- Identify when feature space is insufficient
- Ask user to explain improvement (coactive critiquing)

Solution: coactive critiquing

eliciting local improvements (coactive learning)

Solution: coactive critiquing

asking for explanations if needed (critiquing)

Coactive critiquing algorithm (CC)

procedure $CC(\varphi^1, T)$ $\boldsymbol{w}^1 \leftarrow 0, \ \mathcal{D} \leftarrow \emptyset$ for t = 1, ..., T do Receive context x^t from the user $y^t \leftarrow \operatorname{argmax}_{y \in \mathcal{Y}} \langle \boldsymbol{w}^t, \boldsymbol{\varphi}^t(x^t, y) \rangle$ $\bar{y}^t \leftarrow \text{QUERYIMPROVEMENT}(x^t, y^t)$ $\mathcal{D} \leftarrow \mathcal{D} \cup \{(x^t, y^t, \bar{y}^t)\}$ if NEEDCRITIQUE $(\mathcal{D}, \boldsymbol{\varphi}^t)$ then $\rho \leftarrow \text{QUERYCRITIQUE}(x^t, y^t, \bar{y}^t)$ $\boldsymbol{\varphi}^t \leftarrow \boldsymbol{\varphi}^t \circ [
ho]$ $\boldsymbol{w}^t \leftarrow \boldsymbol{w}^t \circ [0]$ $\boldsymbol{w}^{t+1} \leftarrow \boldsymbol{w}^t + \boldsymbol{\varphi}^t(x^t, \bar{y}^t) - \boldsymbol{\varphi}^t(x^t, y^t)$ $\varphi^{t+1} \leftarrow \varphi^t$

Experimental results: CC vs CL

Going deep:

Dealing with unknown features

 Most preference elicitation approaches assume predefined feature space

• It is often difficult for users to provide explicit features

SOLUTION

Learn features in coactive mode (deep coactive learning)

ReLU Neural Networks

Learn objective features

- Train a NN to predict "objective" features from attributes (e.g. sweet, spicy)
- Train with feedback from multiple users (i.e. "objective" as average over users)

From objective features to user utility

- Compose with user-specific component:
 - from objective to subjective features
 - from subjective features to utility score (preference)

Optimize over input to get recommendation

Coactive feedback backpropagation

$$W^{sub} = W^{sub} + \eta \nabla_{W^{sub}} \left(\frac{\partial u(x)}{\partial \phi_{spicy}^{obj}(x)} \right)_{x=\hat{x}}$$

Credits

P. Viappiani (CNRS - Lip6)

M. Kumar (KULEUVEN)

S. Teso (KULEUVEN)

M. Vescovi (Telecom)

K. Tentori (CIMEC - UNITN)

R. Sebastiani (DISI - UNITN)

P. Campigotto (TU Dortmund)

P. Dragone (DISI - UNITN)

G. Pellegrini (DISI - UNITN)

L. Erculiani (DISI - UNITN)

Thank you, questions?

- •.A. Passerini, Learning Modulo Theories, Springer, Cham, 2016
- S. Teso, A. Passerini, P. Viappiani, Constructive Preference Elicitation by Setwise Max-Margin Learning, IJCAI 2016.
- S. Teso, R. Sebastiani, A. Passerini, **Structured Learning Modulo Theories**, Artificial Intelligence Journal, 2017.
- S. Teso, P. Dragone, A. Passerini, **Coactive Critiquing: Elicitation of Preferences and** Features, AAAI, 2017.
- P. Dragone, S. Teso, A. Passerini, **Constructive Preference Elicitation**, Frontiers in Robotics and AI, 2018.
- P. Dragone, S. Teso, A. Passerini, **Constructive Preference Elicitation over Hybrid Combinatorial Spaces**, AAAI 2018.
- P. Dragone, S. Teso, M. Kumar, A. Passerini, **Decomposition Strategies for Constructive Preference Elicitation**, AAAI 2018.
- P. Dragone, S. Teso, A. Passerini, **Pyconstruct: Constraint Programming Meets Structured Prediction**, IJCAI 2018.
- L. Erculiani, P. Dragone, S. Teso, A. Passerini, **Automating Layout Synthesis with Constructive Preference Elicitation**, ECMLPKDD 2018.
- P. Dragone, G. Pellegrini, M. Vescovi, K. Tentori, A. Passerini, **No more ready-made** deals: constructive recommendation for telco service bundling, RECSYS 2018.

Smart Plan: navigation

Smart Plan: suggesting changes

Smart Plan: experimental setup

System	Interface	Algorithm
CC	Constructive	Constructive
СР	Constructive	Pool
PP	Pool	Pool

- Between groups experiment
- Comparison against pool-based approaches
- **Pool algorithm**: algorithm can choose from (large) pool of options
- Pool interface: user can choose from (small) pool of option

Smart Plan: quantitative results

Preference elicitation example: housing

I would like a house in a safe area, close to my parents and the kindergarten, with a garden if there are no parks nearby. My maximum budget is 300,000 euro.

MAX-SMT formulation

var	desci	ription	1		var	description
y_1	has g	has garden		y_2	has park nearby	
y_3	crim	e rate	ate		y_4	distance from parents
y_5	dista	nce fr	om	om kindergarten		
$\max_{\mathbf{x}} w_1\psi_1 + w_2\psi_2 + w_3(\psi_3 \wedge \psi_4) \text{client utility}$						
su	subject to:					
client soft constraints		ψ_1	=	$(\neg y_2 \Rightarrow y_1)$)	client hard constraints
	ψ_2	=	$(y_3 \le \theta_1)$		$price(\mathbf{y}) \leq 300000$	
	traints	ψ_3	=	$(y_4 \le \theta_2)$		$y_4 \geq heta_4\;$ company hard
		ψ_4	=	$(y_5 \le \theta_3)$		$y_5 \geq heta_5$ constraints

housing revisited

I would like a house in a safe area, close to my parents and the kindergarten, with a garden if there are no parks nearby. My maximum budget is 300,000 euro.

Who is capable of such a precise and exhaustive explanation?

Solving an unknown MAT-SMT problem

- exact problem formulation unknown
- set of candidate catalogue features is available
- set of candidate constraints over the features
- true (unknown) utility is the weighted sum of few constraints over few features
- DM feedback as **pairwise preferences** btw solutions

Problem formulation: catalogue features

set of features characterising candidate solutions

feature	Description	type
y_1	house type	ord
y_2	garden	Bool
y_3	garage	Bool
y_4	commercial facilities nearby	Bool
y_5	public green areas nearby	Bool
y_6	distance from downtown	num
y_7	crime rate	num
y_9	public transit service quality index	num
y_{10}	distance from parents house	num

Problem formulation: possible predicates

all predicates constructible with candidate features

predicate	Description	formula
p_1	has garden	y_2
p_2	has garage	y_3
p_3	has park nearby	y_5
p_4	close to downtown	$y_6 < \theta_1$
p_5	low crime rate area	$y_7 < \theta_2$
p_6	high quality transit service	$y_8 > \theta_3$
• • • •	• • •	• • •

Problem formulation: possible constraints

all constraints constructible with candidate predicates (combinations of up to d predicates)

constraint	Description	formula
ψ_1	has garden	p_1
ψ_2	garden if no park nearby	$\neg p_3 \rightarrow p_1$
ψ_3	good transportation	$\neg p_4 \rightarrow p_6$
	if far from downtown	
ψ_4	garage if high crime rate	$\neg p_5 \rightarrow p_2$
• • • •	•••	•••

User utility

- (Unknown) user utility linear combination of some constraints
- Scoring function linear combination of all candidate constraints

$$\mathbf{y}^* = \operatorname{argmax}_{\mathbf{y}} \mathbf{w}^T \boldsymbol{\varphi}(\mathbf{y})$$

- Need to learn the **few non-zero** weights
- User feedback as pairwise preference btw candidate solutions
Learning user utility: learning to rank

match user pairwise preferences

Learning algorithm

- Initialise weights
- While user not satisfied
 - run MAX-SMT to find candidate configurations: $\mathbf{y}^* = \operatorname{argmax}_{\mathbf{v}} \mathbf{w}^T \boldsymbol{\varphi}(\mathbf{y})$
 - collect feedback as pairwise preferences:

$$\mathbf{y}_i \prec \mathbf{y}_j$$

add constraints and solve learning problem:

$$\min_{\mathbf{w},\xi} \qquad ||\mathbf{w}||_1 + \lambda \sum_{i,j:\mathbf{y}_i \prec \mathbf{y}_j} \xi_{i,j}$$

Experimental results

Partially Input Convex Neural Nets (PICNN)

- Requirements:
 - convex and non-decreasing activations functions
 - non-negative weights in z layers
- Results:
 - network is convex in y

$$\hat{y} = \min_{y \in \mathcal{Y}} f(\hat{x}, y)$$

PICNN for constructive recommendation

Train PICNN to predict ingredients from nutrients

PICNN for constructive recommendation

- Recommend new product by:
 - given a nutrients-ingredients pair and desired nutrients

 $\langle \hat{x}, \hat{y} \rangle \rightarrow \langle \hat{x}', ? \rangle$

get minimal ingredient change giving the desired nutrients

$$\hat{y}' = \min_{y \in \mathcal{Y}} f(\hat{x}', y) + \lambda \,\ell(y, \hat{y})$$