On the combination of knowledge and learning

Andrea Passerini

The first Al boom: expert systems

symbolic reasoning

knowledge acquisition

Limitations of expert systems: Al winter

knowledge acquisition bottleneck
data integrity
no management of uncertainty

New Al spring: machine learning

uncertainty management

With Machine Learning

noise robustness

Current Al boom: deep learning

Machine Learning

Deep Learning

Deep learning successes

game
playing

image
generation

:ढ़̣: AlphaGo

Limitations of deep learning

- Data hungry: need tons of examples to learn
- Opaqueness: learn a black box model
- Lack of Verifiability: no formal guarantees on performance
- Lack of Flexibility: problems in adapting to novel information

(in)Famous DL failures

- Microsoft's Al chatbot corrupted by Twitter Trolls into a pro-nazi mouthpiece
- Photo of Chinese billionaire on an ad on a passing bus wrongly identified as a jaywalker
- Google photos labels two black people as 'gorillas'
- Amazon Alexa places an order for $170 \$$ dollhouse, when a six-years old asked for one

Solution: learning + knowledge

Explainable AI

Solution: learning + knowledge

verifiable AI

Solution: learning + knowledge

Human-level AI

DILBERT BY SCOTT ADAMS

Plenty of approaches exist

Bayesian logic (Deep) Problog

Probabilistic logic learning
Stochastic logic programs Prism

Markov logic networks

Neural Turing machine
Neural reasoning
Neural theorem proving

Probabilistic Soft Logic
Logic tensor networks Statistical learning + fuzzy logic
Semantic-based regularisation

Differentiable neural computer

```
0.2::red.
flip(coin1).
flip(coin2).
0.3::heads(coin1).
0.2::heads(coin2).
side(X,heads) :- heads(X).
is_heads :- flip(X), side(X,heads).
win :- is_heads.
win :- \+is_heads, red.
query(win).
```


DeepProbLog

(Manhaeve et al, 2018)

```
0.2::red.
flip(coin1).
flip(coin2).
%0.3::heads(coin1).
%0.2::heads(coin2).
nn(pred_side, X, [heads, tails])::side(X,heads);side(X,tails)
is_heads :- flip(X), side(X,heads).
win :- is_heads.
win :- \+is_heads, red.
query(win).
```


Semantic based regularisation (SBR)

(Diligenti, Gori, Saccà, 2017)

Deep SBR (Lyrics)

(Marra et al., 2019)

regularisation term

number of training error loss

My research: learning with constraints

- Learning + constraint solving
- to deal with complex background knowledge
- Interactive machine learning
- to keep the user in the loop of the learning process
- Constructive machine learning
- i.e. learning to synthesise novel entities from scratch
- Learning constraints
- to automatically extract knowledge from data

Prediction as constrained optimisation

given part defining input/
unknown part defining context (possibly empty) output/solution

$$
y^{*}=\operatorname{argmax}\langle\boldsymbol{w}, \varphi(x, y)\rangle
$$

set of constraints defining feasible space
scoring function defining solution quality

Learning paradigms

- Structured-output learning
- oracle provides best output for given input
- Preference elicitation
- oracle provides feedback on candidate output

Structured Learning Modules Theories

 [Artificial Intelligence Journal, 2017]
output

- Left: 8×8 B/W bitmap image of an "A"
- Middle: vectorial representation of an "A"
- Right: vectorial representation fitted on the image

Problem formalisation

- Input: set of pixels belonging to character
- Output: set of \boldsymbol{m} directed segments (represented by their begin and end coordinates)
- Score:

$$
\underset{y}{\operatorname{argmax}}(\operatorname{coverage}(x, y), \text { orientation }(y)) \boldsymbol{w}
$$

- output should cover character pixels
- output should "resemble" corresponding vectorial template

Coverage

- Coverage is fraction of covered pixels

$$
\text { coverage }(x, y):=\frac{1}{|P|} \sum_{p \in P} \mathbb{1}(\operatorname{covered}(p))
$$

- Pixel covered by at least one segment

$$
\operatorname{covered}(p):=\bigvee_{i \in[1, m]} \operatorname{covered}(p, i)
$$

- Pixel coverage formula depends on segment orientation

Orientation

- Contains features about orientation of segments

- E.g. An "A" could have a vectorial representation like:

```
increasing(1) ^ head2tail(1,2) ^
increasing(2) ^ head2tail(2,3) ^
decreasing(3) ^ head2head(3,4) ^
horizontal(4) ^ head2tail(4,5) ^
decreasing(5)
```


- Character template is not available at test time
- Orientation features represent all possible orientations and connections for segments

Scoring function

- Scoring function weighted combination of coverage and orientation features

$$
\begin{aligned}
\text { score }:=\boldsymbol{w}^{\top} & (\underbrace{\operatorname{increasing}(i), \text { decreasing }(i), \operatorname{right}(i)}_{\text {for all segments } i}, \\
& \underbrace{h 2 t(i, j), t 2 h(i, j), h 2 h(i, j), t 2 t(i, j)}_{\text {for all segments } i, j \text { with } i<j}, \\
& \text { coverage })
\end{aligned}
$$

- Appropriate weights for the character should be learned

Structured-output learning problem

margin term

penalty for not
satisfying constraint
subject to:

correct solution better than any incorrect one
difference between correct and incorrect output

Problem: exponential number of constraints!!

Structured-output learning problem

margin term
$\min _{\mathbf{w}, \boldsymbol{\xi}} \quad \frac{1}{2}\|\boldsymbol{w}\|^{2}+\frac{C}{n} \sum_{i=1}^{n} \xi_{i}$
penalty for not
satisfying constraint
subject to:

correct solution better than any incorrect one
difference between correct and incorrect output

Solution: iterative approaches (cutting plane, Frank-Wolfe)

Results for "A"

test set

Results for "B"

test set

Results for "C"

test set

Results for "D"

training set

test set

Results for "E"

training set

test set

Pyconstruct:

a library for declarative structured-output learning

Pyconstruct

Pyconstruct is a Python library for declarative, constrained, structured-output prediction. When using Pyconstruct, the problem specification can be encoded in MiniZinc, a high-level constraint programming language. This means that domain knowledge can be declaratively included in the inference procedure as constraints over the optimization variables.

Check out the Quick Start guide to learn how to solve your first problem with Pyconstruct.

Going deep:

 Deep declarative structured-output learning

Experimental results

Deep nets fail to learn semantics

Constructive preference elicitation

- Preference elicitation selects the most preferred item in a catalogue of candidates

WETFLIK				Movies, TV shows, actors, directors, genres
Watch Instantly	Browse DVDs	Your Queue	Movies You'll ${ }^{\text {- }}$	

Congratulations! Movies we think You will
Add movies to your Queue, or Rate ones you've seen for even better suggestions.

- Constructive preference elicitation aims at synthesising the most preferred configuration given a set of constraints

Examples: assembly

modify a recipe

Examples: layout synthesis

Examples: the ultimate cocktail machine!

Plain preference elicitation

Constructive preference elicitation

learning user utilities

- User utility as weighted combination of item features

- Recommendation as utility maximisation

$$
y^{*}=\underset{y \in \mathcal{Y}_{\text {feasible }}}{\operatorname{argmax}}\langle\boldsymbol{w}, \boldsymbol{\varphi}(x, y)\rangle
$$

- Interactive approaches to learn utility weights

Leveraging proactive users

[ECMLPKDD 2018, RECSYS 2018]

PROBLEM

- Most interactive approaches ask for pairwise (or setwise) preferences
- The set of candidates is predetermined

SOLUTION

- Ask user to improve current solution (coactive learning)
- Improvements over features or objects

Coactive learning

(Shivaswamy \& Joachims, 2012)

Coactive learning (CL)

procedure $\mathrm{CL}(T)$
$\boldsymbol{w}^{1} \leftarrow 0$
for $t=1, \ldots, T$ do
Receive context x^{t} from the user
$y^{t} \leftarrow \operatorname{argmax}_{y \in \mathcal{Y}}\left\langle\boldsymbol{w}^{t}, \boldsymbol{\varphi}\left(x^{t}, y\right)\right\rangle$ $\bar{y}^{t} \leftarrow \operatorname{QueryImprovement}\left(x^{t}, y^{t}\right)$
$\boldsymbol{w}^{t+1} \leftarrow \boldsymbol{w}^{t}+\boldsymbol{\varphi}\left(x^{t}, \bar{y}^{t}\right)-\boldsymbol{\varphi}\left(x^{t}, y^{t}\right)$

Layout synthesis: user interaction

feature manipulation

object manipulation

Layout synthesis: furniture arrangement

Layout synthesis: floor planning

Initial

Loft

Leveraging user explanations

[AAAI, 2017]

PROBLEM

- Most interactive learning approaches assume predefined feature space
- Users often realise requirements during process

SOLUTION

- Identify when feature space is insufficient
- Ask user to explain improvement (coactive critiquing)

Solution: coactive critiquing

eliciting local improvements (coactive learning)

Solution: coactive critiquing

asking for explanations if needed (critiquing)

Coactive critiquing algorithm (CC)

procedure $\mathrm{CC}\left(\varphi^{1}, T\right)$

$$
\begin{aligned}
& \boldsymbol{w}^{1} \leftarrow 0, \mathcal{D} \leftarrow \emptyset \\
& \text { for } t=1, \ldots, T \text { do }
\end{aligned}
$$

Receive context x^{t} from the user

$$
y^{t} \leftarrow \operatorname{argmax}_{y \in \mathcal{Y}}\left\langle\boldsymbol{w}^{t}, \boldsymbol{\varphi}^{t}\left(x^{t}, y\right)\right\rangle
$$

$$
\bar{y}^{t} \leftarrow \operatorname{QUERYIMPROVEMENT}\left(x^{t}, y^{t}\right)
$$

$\mathcal{D} \leftarrow \mathcal{D} \cup\left\{\left(x^{t}, y^{t}, \bar{y}^{t}\right)\right\}$
if NeedCritique $\left(\mathcal{D}, \varphi^{t}\right)$ then
$\rho \leftarrow \operatorname{QueryCritique}\left(x^{t}, y^{t}, \bar{y}^{t}\right)$
$\varphi^{t} \leftarrow \varphi^{t} \circ[\rho]$
$\boldsymbol{w}^{t} \leftarrow \boldsymbol{w}^{t} \circ[0]$
$\boldsymbol{w}^{t+1} \leftarrow \boldsymbol{w}^{t}+\boldsymbol{\varphi}^{t}\left(x^{t}, \bar{y}^{t}\right)-\boldsymbol{\varphi}^{t}\left(x^{t}, y^{t}\right)$
$\varphi^{t+1} \leftarrow \varphi^{t}$

Experimental results: CC vs CL

Going deep:

 Dealing with unknown features
PROBLEM

- Most preference elicitation approaches assume predefined feature space
- It is often difficult for users to provide explicit features

SOLUTION

- Learn features in coactive mode (deep coactive learning)

ReLU Neural Networks

Learn objective features

- Train a NN to predict "objective" features from attributes (e.g. sweet, spicy)
- Train with feedback from multiple users (i.e. "objective" as average over users)

From objective features to user utility

- Compose with user-specific component:
- from objective to subjective features
- from subjective features to utility score (preference)

Optimize over input to get recommendation

Coactive feedback backpropagation

$$
W^{\text {sub }}=W^{\text {sub }}+\eta \nabla_{W^{s u b}}\left(\frac{\partial u(x)}{\partial \phi_{\text {spicy }}^{o b j}(x)}\right)_{x=\hat{x}}
$$

Credits

WENET
 INTERNET OF US

P. Viappiani (CNRS - Lip6)

M. Kumar (KULEUVEN)
P. Campigotto
(TU Dortmund) (TU Dortmund)

S. Teso (KULEUVEN)

R. Sebastiani (DISI - UNITN)

G. Pellegrini
(DISI - UNITN)

K. Tentori
(CIMEC - UNITN)

M. Vescovi
(Telecom)

L. Erculiani (DISI - UNITN)

Thank you, questions?

-.A. Passerini, Learning Modulo Theories, Springer, Cham, 2016

- S. Teso, A. Passerini, P. Viappiani, Constructive Preference Elicitation by Setwise Max-Margin Learning, IJCAI 2016.
- S. Teso, R. Sebastiani, A. Passerini, Structured Learning Modulo Theories, Artificial Intelligence Journal, 2017.
- S. Teso, P. Dragone, A. Passerini, Coactive Critiquing: Elicitation of Preferences and Features, AAAI, 201%.
-P. Dragone, S. Teso, A. Passerini, Constructive Preference Flicitation, Frontiers in Robotics and AI, 2018.
- P. Dragone, S. Teso, A. Passerini, Constructive Preference Elicitation over Hybrid Combinatorial Spaces, AAAI 2018.
- P. Dragone, S. Teso, M. Kumar, A. Passerini, Decomposition Strategies for Constructive Preference Elicitation, AAAI 2018.
- P. Dragone, S. Teso, A. Passerini, Pyconstruct: Constraint Programming Meets Structured Prediction, IJCAI 2018.
-L. Erculiani, P. Dragone, S. Teso, A. Passerini, Automating Layout Synthesis with Constructive Preference Elicitation, ECMLPKDD 2018.
- P. Dragone, G. Pellegrini, M. Vescovi, K. Tentori, A. Passerini, No more ready-made deals: constructive recommendation for telco service bundling, RECSYS 2018.

Smart Plan: navigation

Smart Plan: suggesting changes

Smart Plan: experimental setup

System	Interface	Algorithm
CC	Constructive	Constructive
CP	Constructive	Pool
PP	Pool	Pool

- Between groups experiment
- Comparison against pool-based approaches
- Pool algorithm: algorithm can choose from (large) pool of options
- Pool interface: user can choose from (small) pool of option

Smart Plan: quantitative results

- 29\% more satisfactory interactions

Preference elicitation example: housing

I would like a house in a safe area, close to my parents and the kindergarten, with a garden if there are no parks nearby. My maximum
budget is 300,000 euro.
MAX-SMT formulation

var	description	var	description
y_{1}	has garden	y_{2}	has park nearby
y_{3}	crime rate	y_{4}	distance from parents

y_{5} distance from kindergarten

$$
\max _{\mathbf{x}}: \begin{array}{l:c}
1 & \psi_{1}+w_{2} \psi_{2}+w_{3}\left(\psi_{3} \wedge \psi_{4}\right) \quad \text { client utility }
\end{array}
$$

subject to:

$$
\begin{aligned}
& \psi_{1}=\left(\neg y_{2} \Rightarrow y_{1}\right) \\
& \text { client soft } \\
& \psi_{2}=\left(y_{3} \leq \theta_{1}\right) \\
& \text { constraints } \\
& \psi_{3}=\left(y_{4} \leq \theta_{2}\right) \\
& \psi_{4}=\left(y_{5} \leq \theta_{3}\right)
\end{aligned}
$$

client hard constraints $\operatorname{price}(\mathbf{y}) \leq 300000$
$y_{4} \geq \theta_{4}$ company hard $y_{5} \geq \theta_{5} \quad$ constraints

housing revisited

I would like a house in a safe area, close to my parents and the kindergarten, with a garden if there are no parks nearby. My maximum budget is 300,000 euro.

Who is capable of such a precise and exhaustive explanation?

Solving an unknown MAT-SMT problem

help!!!

- exact problem formulation unknown
- set of candidate catalogue features is available
- set of candidate constraints over the features
- true (unknown) utility is the weighted sum of few constraints over few features
- DM feedback as pairwise preferences btw solutions

Problem formulation: catalogue features

set of features characterising candidate solutions

feature	Description	type
y_{1}	house type	ord
y_{2}	garden	Bool
y_{3}	garage	Bool
y_{4}	commercial facilities nearby	Bool
y_{5}	public green areas nearby	Bool
y_{6}	distance from downtown	num
y_{7}	crime rate	num
y_{9}	public transit service quality index	num
y_{10}	distance from parents house	num
\ldots.	\ldots	\ldots

Problem formulation: possible predicates

all predicates constructible with candidate features

predicate	Description	formula
p_{1}	has garden	y_{2}
p_{2}	has garage	y_{3}
p_{3}	has park nearby	y_{5}
p_{4}	close to downtown	$y_{6}<\theta_{1}$
p_{5}	low crime rate area	$y_{7}<\theta_{2}$
p_{6}	high quality transit service	$y_{8}>\theta_{3}$
\ldots	\ldots	\ldots

Problem formulation: possible constraints

all constraints constructible with candidate predicates (combinations of up to d predicates)

constraint	Description	formula
ψ_{1}	has garden	p_{1}
ψ_{2}	garden if no park nearby	$\neg p_{3} \rightarrow p_{1}$
ψ_{3}	good transportation	$\neg p_{4} \rightarrow p_{6}$
	\quad if far from downtown	
ψ_{4}	garage if high crime rate	$\neg p_{5} \rightarrow p_{2}$
\cdots	\cdots	\cdots

User utility

- (Unknown) user utility linear combination of some constraints
- Scoring function linear combination of all candidate constraints

$$
\mathbf{y}^{*}=\operatorname{argmax}_{\mathbf{y}} \mathbf{w}^{T} \boldsymbol{\varphi}(\mathbf{y})
$$

- Need to learn the few non-zero weights
- User feedback as pairwise preference btw candidate solutions

Learning user utility: learning to rank

> penalty for not satisfying constraint
subject to:

minimal distance
match user pairwise preferences

Learning algorithm

- Initialise weights
- While user not satisfied
- run MAX-SMT to find candidate configurations:

$$
\mathbf{y}^{*}=\operatorname{argmax}_{\mathbf{y}} \mathbf{w}^{T} \boldsymbol{\varphi}(\mathbf{y})
$$

- collect feedback as pairwise preferences:

$$
\mathbf{y}_{i} \prec \mathbf{y}_{j}
$$

- add constraints and solve learning problem:

$$
\min _{\mathbf{w}, \xi} \quad\|\mathbf{w}\|_{1}+\lambda \sum_{i, j::_{i}<\mathbf{y}_{j}} \xi_{i, j}
$$

Experimental results

Partially Input Convex Neural Nets (PICNN)

- Requirements:
- convex and non-decreasing activations functions
- non-negative weights in z layers
- Results:
- network is convex in y

$$
\hat{y}=\min _{y \in \mathcal{V}} f(\hat{x}, y)
$$

PICNN for constructive recommendation

- Train PICNN to predict ingredients from nutrients

PICNN for constructive recommendation

- Recommend new product by:
- given a nutrients-ingredients pair and desired nutrients

$$
\langle\hat{x}, \hat{y}\rangle \rightarrow\left\langle\hat{x}^{\prime}, ?\right\rangle
$$

- get minimal ingredient change giving the desired nutrients

$$
\hat{y}^{\prime}=\min _{y \in \mathcal{Y}} f\left(\hat{x}^{\prime}, y\right)+\lambda \ell(y, \hat{y})
$$

