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Preference and Feature Elicitation

Motivation

I Feature engineering is di�cult

I Relevant features di↵er across users

I Sparse learning over complete feature space is expensive

Solution

Lean user preferences and relevant features through user interaction.

Coactive Learning [? ]

procedure CL(X ,�, T )
w1 0
for t = 1, . . . , T do

xt argmaxx2X hwt,�(x)i
x̄t QueryImprovement(xt)
wt+1 wt + �(x̄t)� �(xt)

return argmaxx2X hwT ,�(x)i

Learn user preferences through manipulative feedback.

Average regret at T (for true user utility u⇤):
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Theoretical upper bound on average regret:

REGT  2R

↵
p
T
kw⇤k + 1

↵T

TX

t=1

⇠t

Coactive Critiquing

procedure CC(X ,�1, T )
w1 0, D  ?
for t = 1, . . . , T do

xt argmaxx2Xhwt,�t(x)i
x̄t QueryImprovement(xt)
D  D [ {(xt, x̄t)}
if NeedCritique(D,�t) then

⇢ QueryCritique(xt, x̄t)
�t �t � [⇢]
wt wt � [0]

wt+1 wt + �t(x̄t)� �t(xt)
�t+1 �t

return argmaxx2XhwT ,�T (x)i

I Ask for improvements as in Coactive Learning

I Occasionally ask for “critiques”

I Critiques are formulas that explain the improvement

I Augment feature space with the critique

Theoretical guarantee

Discrepancy in utility gain due to the missing features:
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X
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Theoretical upper bound on average regret:
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When to ask for critiques

Critiques are expensive for the user. Ask critiques only when necessary.

Ask critique when D is not linearly separable:

9w 8(x, x̄)2D hw,�(x̄t)��(xt)i > 0

i.e. when current �t
cannot represent a utility in D.

Experiments: condition for critique

Comparison of CC with the above condition (red) against CC asking

critiques at random iterations.

(p = probability of asking critique)

Experiments: comparison with Coactive Learning

Comparison against CL with di↵erent percentages of initial features.

Synthetic

Realistic (trip planning)
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The first AI boom: expert systems

symbolic reasoning

knowledge base

knowledge acquisition



Limitations of expert systems: AI winter

data integrityknowledge acquisition bottleneck

no management of uncertainty



New AI spring: machine learning

uncertainty management

learning from data 

noise robustness



Current AI boom: deep learning



Deep learning successes

game  
playing

computer  
vision

image  
generation



Limitations of deep learning

• Data hungry: need tons of examples to learn

• Opaqueness: learn a black box model

• Lack of Verifiability: no formal guarantees on 
performance

• Lack of Flexibility: problems in adapting to novel 
information



(in)Famous DL failures

• Microsoft’s AI chatbot corrupted by Twitter Trolls 
into a pro-nazi mouthpiece

• Photo of Chinese billionaire on an ad on a passing 
bus wrongly identified as a jaywalker

• Google photos labels two black people as ‘gorillas’ 

• Amazon Alexa places an order for 170$ dollhouse, 
when a six-years old asked for one



Solution: learning + knowledge 

Explainable AI



Solution: learning + knowledge 

verifiable AI



Solution: learning + knowledge 

Human-level AI



Plenty of approaches exist

Markov logic networks

(Deep) Problog

Stochastic logic programs Prism

Bayesian logic

Semantic-based  
regularisation

Logic tensor networks
Probabilistic Soft Logic

Neural reasoning

Statistical learning +  
fuzzy logic

Probabilistic logic learning

Neural theorem proving
Differentiable neural computer

Neural Turing machine



%%%% PROBLOG %%%%%

0.2::red.

flip(coin1).

flip(coin2).

0.3::heads(coin1).

0.2::heads(coin2).

side(X,heads) :- heads(X).

is_heads :- flip(X), side(X,heads).

win :- is_heads.

win :- \+is_heads, red.

query(win).

%%%% DEEP PROBLOG %%%%%

0.2::red.

flip(coin1).

flip(coin2).

%0.3::heads(coin1).

%0.2::heads(coin2).

nn(pred_side, X, [heads, tails])::side(X,heads);side(X,tails).

is_heads :- flip(X), side(X,heads).

win :- is_heads.

win :- \+is_heads, red.

query(win).

1

ProbLog  
(De Raedt & Kimmig, 2015)



%%%% PROBLOG %%%%%

0.2::red.

flip(coin1).

flip(coin2).

0.3::heads(coin1).

0.2::heads(coin2).

side(X,heads) :- heads(X).

is_heads :- flip(X), side(X,heads).

win :- is_heads.

win :- \+is_heads, red.

query(win).

%%%% DEEP PROBLOG %%%%%

0.2::red.

flip(coin1).
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%0.2::heads(coin2).
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is_heads :- flip(X), side(X,heads).

win :- is_heads.

win :- \+is_heads, red.

query(win).

1

neural network taking coin image as 
input and returning probability 
distribution over flip outcomes

DeepProbLog  
(Manhaeve et al, 2018)



Semantic based regularisation (SBR)  
(Diligenti, Gori, Saccà, 2017)Reproducing Kernel Hilbert Space. In the following, f = [f1, . . . , fT ]′ indicates the vector collecting

all task functions. The basic assumption of SBR is that the task functions are correlated as they have to
meet a set of constraints that can be expressed by the functionals φh : H1× . . .×HT → [0,+∞) such
that φh(f) = 0 h = 1, . . . , H must hold for any valid choice of fk ∈ Hk, k = 1, . . . , T . Following the
classical penalty approach for constrained optimization, the constraints are embedded by adding a term
that penalizes their violation:
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where L(·) is a loss function measuring the distance of the function output from the desired one and S is
the considered sample of data points over which the functions are evaluated. In the experimental setting,
L(·) has been set to be the hinge function. It is possible to extend the Representer Theorem to show that
the best solution for equation 3 can be expressed as a kernel expansion as showed in equation 2 [22].

Therefore, using kernel expansions, equation 3 becomes:

λr

T
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k=1

w′
kGkwk +

T
∑
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L (Gkwk,yk) +

+ λc

H
∑

h=1

φh(G1w1, . . . ,GTwT ) ,

whereGk, wk, fk = Gkwk and yk are the gram matrix, the weights, the function values over the data
sample and the desired output column vectors for the patterns in the domain of the k-th task. Evidence
tasks do not need to be approximated as their are fully known.

Optimization of thewk parameters for the cost function in equation 4 can be done using gradient descent.
Constraint φh are non-linear in most interesting cases like the one presented in this paper. Therefore,
the cost function can present multiple local minima, making optimization difficult. SBR uses a two-
step heuristic to solve this problem: first it computes the theoretically global optimum for all predicates
independently (setting λc = 0), which are convex kernel machines. Then, it introduces the constraints
and proceeds to find a good solution using a gradient descent.

In the following we show how to express first order logic clauses in terms of constraints φh.

Translation of first-order logic clauses into real-valued constraints

With no loss of generality, we restrict our attention to FOL clauses in the PNF form, where all the
quantifiers (∀, ∃) and their associated quantified variables are placed at the beginning of the clause. For
example:

Quantifiers
︷ ︸︸ ︷

∀v1∀v2

Quantifier−free expression
︷ ︸︸ ︷

A(v1) ∧B(v2)⇒ C(v1) (4)

Please note that the quantifier-free part of the expression is equivalent to an assertion in propositional
logic for any given grounding of the quantified variables. As studied in the context of fuzzy logic
and symbolic AI, different methods can be used for the conversion of a propositional expression into a
continuous function with [0, 1] input variables.

Reproducing Kernel Hilbert Space. In the following, f = [f1, . . . , fT ]′ indicates the vector collecting
all task functions. The basic assumption of SBR is that the task functions are correlated as they have to
meet a set of constraints that can be expressed by the functionals φh : H1× . . .×HT → [0,+∞) such
that φh(f) = 0 h = 1, . . . , H must hold for any valid choice of fk ∈ Hk, k = 1, . . . , T . Following the
classical penalty approach for constrained optimization, the constraints are embedded by adding a term
that penalizes their violation:
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where L(·) is a loss function measuring the distance of the function output from the desired one and S is
the considered sample of data points over which the functions are evaluated. In the experimental setting,
L(·) has been set to be the hinge function. It is possible to extend the Representer Theorem to show that
the best solution for equation 3 can be expressed as a kernel expansion as showed in equation 2 [22].

Therefore, using kernel expansions, equation 3 becomes:
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H
∑
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φh(G1w1, . . . ,GTwT ) ,

whereGk, wk, fk = Gkwk and yk are the gram matrix, the weights, the function values over the data
sample and the desired output column vectors for the patterns in the domain of the k-th task. Evidence
tasks do not need to be approximated as their are fully known.

Optimization of thewk parameters for the cost function in equation 4 can be done using gradient descent.
Constraint φh are non-linear in most interesting cases like the one presented in this paper. Therefore,
the cost function can present multiple local minima, making optimization difficult. SBR uses a two-
step heuristic to solve this problem: first it computes the theoretically global optimum for all predicates
independently (setting λc = 0), which are convex kernel machines. Then, it introduces the constraints
and proceeds to find a good solution using a gradient descent.

In the following we show how to express first order logic clauses in terms of constraints φh.

Translation of first-order logic clauses into real-valued constraints

With no loss of generality, we restrict our attention to FOL clauses in the PNF form, where all the
quantifiers (∀, ∃) and their associated quantified variables are placed at the beginning of the clause. For
example:

Quantifiers
︷ ︸︸ ︷

∀v1∀v2

Quantifier−free expression
︷ ︸︸ ︷

A(v1) ∧B(v2)⇒ C(v1) (4)

Please note that the quantifier-free part of the expression is equivalent to an assertion in propositional
logic for any given grounding of the quantified variables. As studied in the context of fuzzy logic
and symbolic AI, different methods can be used for the conversion of a propositional expression into a
continuous function with [0, 1] input variables.

regularisation term training error loss

constraint 
satisfaction term

predictor for task k

number of  
tasks



Deep SBR (Lyrics)  
(Marra et al., 2019)Reproducing Kernel Hilbert Space. In the following, f = [f1, . . . , fT ]′ indicates the vector collecting

all task functions. The basic assumption of SBR is that the task functions are correlated as they have to
meet a set of constraints that can be expressed by the functionals φh : H1× . . .×HT → [0,+∞) such
that φh(f) = 0 h = 1, . . . , H must hold for any valid choice of fk ∈ Hk, k = 1, . . . , T . Following the
classical penalty approach for constrained optimization, the constraints are embedded by adding a term
that penalizes their violation:
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where L(·) is a loss function measuring the distance of the function output from the desired one and S is
the considered sample of data points over which the functions are evaluated. In the experimental setting,
L(·) has been set to be the hinge function. It is possible to extend the Representer Theorem to show that
the best solution for equation 3 can be expressed as a kernel expansion as showed in equation 2 [22].

Therefore, using kernel expansions, equation 3 becomes:
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φh(G1w1, . . . ,GTwT ) ,

whereGk, wk, fk = Gkwk and yk are the gram matrix, the weights, the function values over the data
sample and the desired output column vectors for the patterns in the domain of the k-th task. Evidence
tasks do not need to be approximated as their are fully known.

Optimization of thewk parameters for the cost function in equation 4 can be done using gradient descent.
Constraint φh are non-linear in most interesting cases like the one presented in this paper. Therefore,
the cost function can present multiple local minima, making optimization difficult. SBR uses a two-
step heuristic to solve this problem: first it computes the theoretically global optimum for all predicates
independently (setting λc = 0), which are convex kernel machines. Then, it introduces the constraints
and proceeds to find a good solution using a gradient descent.

In the following we show how to express first order logic clauses in terms of constraints φh.

Translation of first-order logic clauses into real-valued constraints

With no loss of generality, we restrict our attention to FOL clauses in the PNF form, where all the
quantifiers (∀, ∃) and their associated quantified variables are placed at the beginning of the clause. For
example:
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︷ ︸︸ ︷

∀v1∀v2

Quantifier−free expression
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A(v1) ∧B(v2)⇒ C(v1) (4)

Please note that the quantifier-free part of the expression is equivalent to an assertion in propositional
logic for any given grounding of the quantified variables. As studied in the context of fuzzy logic
and symbolic AI, different methods can be used for the conversion of a propositional expression into a
continuous function with [0, 1] input variables.

Reproducing Kernel Hilbert Space. In the following, f = [f1, . . . , fT ]′ indicates the vector collecting
all task functions. The basic assumption of SBR is that the task functions are correlated as they have to
meet a set of constraints that can be expressed by the functionals φh : H1× . . .×HT → [0,+∞) such
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where L(·) is a loss function measuring the distance of the function output from the desired one and S is
the considered sample of data points over which the functions are evaluated. In the experimental setting,
L(·) has been set to be the hinge function. It is possible to extend the Representer Theorem to show that
the best solution for equation 3 can be expressed as a kernel expansion as showed in equation 2 [22].

Therefore, using kernel expansions, equation 3 becomes:
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whereGk, wk, fk = Gkwk and yk are the gram matrix, the weights, the function values over the data
sample and the desired output column vectors for the patterns in the domain of the k-th task. Evidence
tasks do not need to be approximated as their are fully known.

Optimization of thewk parameters for the cost function in equation 4 can be done using gradient descent.
Constraint φh are non-linear in most interesting cases like the one presented in this paper. Therefore,
the cost function can present multiple local minima, making optimization difficult. SBR uses a two-
step heuristic to solve this problem: first it computes the theoretically global optimum for all predicates
independently (setting λc = 0), which are convex kernel machines. Then, it introduces the constraints
and proceeds to find a good solution using a gradient descent.

In the following we show how to express first order logic clauses in terms of constraints φh.

Translation of first-order logic clauses into real-valued constraints

With no loss of generality, we restrict our attention to FOL clauses in the PNF form, where all the
quantifiers (∀, ∃) and their associated quantified variables are placed at the beginning of the clause. For
example:

Quantifiers
︷ ︸︸ ︷

∀v1∀v2

Quantifier−free expression
︷ ︸︸ ︷

A(v1) ∧B(v2)⇒ C(v1) (4)

Please note that the quantifier-free part of the expression is equivalent to an assertion in propositional
logic for any given grounding of the quantified variables. As studied in the context of fuzzy logic
and symbolic AI, different methods can be used for the conversion of a propositional expression into a
continuous function with [0, 1] input variables.

regularisation term training error loss

constraint 
satisfaction term

deep NN predictor for task k

number of  
tasks



My research: learning with constraints

• Learning + constraint solving 
• to deal with complex background knowledge

• Interactive machine learning 
• to keep the user in the loop of the learning process

• Constructive machine learning 
• i.e. learning to synthesise novel entities from scratch

• Learning constraints
• to automatically extract knowledge from data



given part defining input/
context (possibly empty)

unknown part defining 
output/solution

feature function 
defining relevant 

featuresscoring function 
defining solution quality

set of constraints 
defining feasible space

max
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kwik1 + �
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hwi,xii

s.t. hwi, x̄h
+ � x̄h

�i � µ� "ih

hwi,xi � xji � µ
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xi 2 Xfeasible , "i � 0
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1

Prediction as constrained optimisation



Learning paradigms

• Structured-output learning

• oracle provides best output for given input

• Preference elicitation

• oracle provides feedback on candidate output



• Left: 8x8 B/W bitmap image of an “A” 

• Middle: vectorial representation of an “A” 

• Right: vectorial representation fitted on the image 

(a) (b) (c)

1

2 3

4
5

0

1

0 1
0

1

0 1
0

1

0 1

3

1

2

4

5

Figure 7: Left, example 8⇥8 bitmap image of an “A”. Middle, a set of 5 segments satisfying
the “looking like an A” rules in the text. Right, 5 segments satisfying both the rules for
character ‘A’ and fitting the underlying image.

35

input  template output

Structured Learning Modules Theories 
[Artificial Intelligence Journal, 2017]



Problem formalisation

• Input: set of pixels belonging to character

• Output: set of m directed segments (represented by their begin 
and end coordinates)

• Score:

• output should cover character pixels

• output should “resemble” corresponding vectorial template

argmin
w

kwk1 +
C

n

nX

i=1

⇠i

argmin
A,b

�2kAk1,2 + �1kAk1,1 + kbk1

s.t. 8 i = 1, . . . , n Azi + b � 0
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aT
k z + bk � 0

z = [xT , yT ]T

argmin
w,⇠
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C
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8 i = 1, . . . , n; y0 6= yi

 k :=  k(x, y) = k(x, y)

 k̄ := 1� k

 kh =  k h

f(x, y) = wT (d)(x, y)

1



Coverage

• Coverage is fraction of covered pixels

• Pixel covered by at least one segment

• Pixel coverage formula depends on segment 
orientation

(without loss of generality) each segment to be ordered from left to right, i.e.
xb

i  xe
i . Finally, we restrict the segments to be either horizontal, vertical or

45� diagonal, that is:

8i horizontal(i) _ vertical(i) _ diagonal(i)

This restriction allows us express all numerical constraints in linear terms.
All the predicates used above are defined as in Table 8.

Under these assumptions, we can encode the coverage reward as:

coverage(I, O) :=
1

|P |
X

p2P

(covered(p))

where covered(p) is true if pixel p is covered by at least one of the m seg-
ments:

covered(p) :=
_

i2[1,m]

covered(p, i)

Here we normalize coverage to allow generalizing between training and test
images with di↵erent number of observed pixels. The fact that a segment
i = (xb

i , y
b
i , x

e
i , y

e
i ) covers pixel p = (x, y) implicitly depends on the orientation

of the segment, and is computed using constructs like:

If horizontal(i) then covered(p, i) := xb
i  x  xe

i ^ y = yb
i

The coverage formulae for the other segment types can be found in Table 8.
As for the orientation term, it should contain features related to the

vectorial representation of characters. These include both the direction of
the individual segments and the connections between pairs of segments. As
an example, consider this possible description of “looking like an A”:

increasing(1) ^ h2t(1, 2) ^
increasing(2) ^ h2t(2, 3) ^
decreasing(3) ^ h2h(3, 4) ^
horizontal(4) ^ h2t(4, 5) ^
decreasing(5)

Here increasing(i) and decreasing(i) indicate the direction of segment i,
and can be written as:

increasing(i) := ye
i > yb

i

decreasing(i) := ye
i < yb

i
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w

kwk1 +
C

n

nX

i=1

⇠i

argmin
A,b

�2kAk1,2 + �1kAk1,1 + kbk1

s.t. 8 i = 1, . . . , n Azi + b � 0

8 i = 1, . . . , n; z0 6= zi
X

k

(Azi + b)k >
X

k

(Az0 + b)k

argmax
y

(coverage(x, y), orientation(y)) w

coverage(x, y) :=
1

|P |
X

p2P

(covered(p))

argmin
w,A,b

kwk1 + � (kAk? + kbk?) +
C

n

nX

i=1

⇠i

s.t. w>( (d)(xi, yi)� (d)(xi, y
0)) � �(xi, yi, y

0)� ⇠i

8 i = 1, . . . , n; z0 6= zi

aT
k z + bk � 0

z = [xT , yT ]T

argmin
w,⇠

kwk1 +
C

n

nX

i=1

⇠i (1)

s.t. w>( (d)(xi, yi)� (d)(xi, y
0)) � �(xi, yi, y

0)� ⇠i

8 i = 1, . . . , n; y0 6= yi

 k :=  k(x, y) = k(x, y)

 k̄ := 1� k

 kh =  k h

f(x, y) = wT (d)(x, y)

1



Orientation

• Contains features about orientation of segments

• E.g. An “A” could have a vectorial representation like:
(a) (b) (c)

1

2 3

4
5

0

1

0 1
0

1

0 1
0

1

0 1

3

1

2

4

5

Figure 7: Left, example 8⇥8 bitmap image of an “A”. Middle, a set of 5 segments satisfying
the “looking like an A” rules in the text. Right, 5 segments satisfying both the rules for
character ‘A’ and fitting the underlying image.
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increasing(1) ^ head2tail(1, 2) ^
increasing(2) ^ head2tail(2, 3) ^
decreasing(3) ^ head2head(3, 4) ^
horizontal(4) ^ head2tail(4, 5) ^
decreasing(5)

cost := (maxshl,minshl, maxshr,minshr,

maxswl,minswl,maxswr,minswr, vmat, hmat) w

minswr = m⇥ min
i2[1,m�1]

(
(xi+1 + dxi+1)� (xi + dxi) if i, i + 1 form a right step
0 otherwise

arg max
x2,y2,dx2,dy2

w1dx2 + w2dy2

right(1, 2) := x2 + dx2 = x1^
((y1  y2  y1 + dy1) _ (y1  y2 + dy2  y1 + dy1))

left step(i, j) := (left(i, j) ^ (yi + dyi) > (yj + dyj))
_ (over(i, j) ^ (xi + dxi) < (xj + dxj))

var description var description
x1 has garden x2 has park nearby
x3 crime rate x4 distance from parents
x5 distance from kindergarten

 1 = (¬x2 ) x1)
 2 = (x3  ✓1)
 3 = (x4  ✓2)
 4 = (x5  ✓3)

price(x)  300000

1

• Character template is not available at test time

• Orientation features represent all possible orientations  
and connections for segments



Scoring function

• Scoring function weighted combination of coverage and 
orientation features

• Appropriate weights for the character should be learned 

predicate Description formula
p1 has garden x2

p2 has garage x3

p3 has park nearby x5

p4 close to downtown x6 < ✓1
p5 low crime rate area x7 < ✓2
p6 high quality transit service x8 > ✓3
.... ... ...

sign f(x) = sign wTx

f(x) =
X

i

↵iK(xi,x)

increasing(1) ^ head2tail(1, 2) ^
increasing(2) ^ head2tail(2, 3) ^
decreasing(3) ^ head2head(3, 4) ^
horizontal(4) ^ head2tail(4, 5) ^
decreasing(5)

score := f(I,O) = w
T
 (I,O) = (maxshl,minshl,maxshr,minshr,maxswl,

minswl,maxswr,minswr, vmat, hmat) w

minswr = m⇥ min
i2[1,m�1]

(
(xi+1 + dxi+1)� (xi + dxi) if i, i+ 1 form a right step

0 otherwise

argmax
x2,y2,dx2,dy2

w1dx2 + w2dy2

score := w
>( increasing(i), decreasing(i), right(i)| {z }

for all segments i

,

h2t(i, j), t2h(i, j), h2h(i, j), t2t(i, j)| {z }
for all segments i, j with i < j

,

coverage)

right(1, 2) := x2 + dx2 = x1^
((y1  y2  y1 + dy1) _ (y1  y2 + dy2  y1 + dy1))

7



Structured-output learning problem

correct solution better than any incorrect one difference between correct and 
incorrect output

penalty for not 
satisfying constraint

margin term penalty term

Problem: exponential number of constraints!!

minx c1 + c2 + c3 + c4

subject to:
soft constraints
hard constraints
company
const
client

const

fy(x) = wT (x, y)

y⇤ = argmaxyw
T (x, y)

minw,⇠
1

2
kwk2 + C

n

nX

i=1

⇠i

subject to:

w>( (xi, yi)� (xi, y
0)) � �(yi, y

0)� ⇠i

8 i = 1, . . . , n; y0 6= yi

minw,⇠
1

2
||w||2 + �

X

i

⇠i

subject to:

wT (xi, yi)�wT (xi, y
0) � �(yi, y

0)� ⇠i

8i, 8y0 6= yi

⇠i = maxy02Si�(yi, y
0) +wT (xi, y

0)�wT (xi, yi)

⇠newi = maxy0 6=yi�(yi, y
0) +wT (xi, y

0)�wT (xi, yi)

⇠i = maxy02Si�(yi, y
0) +wT (xi, y

0)�wT (xi, yi)

⇠newi = maxy0 6=yi�(yi, y
0) +wT (xi, y

0)�wT (xi, yi)

⇠newi � ⇠i > ✏
Si

9



Structured-output learning problem

correct solution better than any incorrect one difference between correct and 
incorrect output

penalty for not 
satisfying constraint

margin term penalty term

Solution: iterative approaches (cutting plane, Frank-Wolfe)

minx c1 + c2 + c3 + c4

subject to:
soft constraints
hard constraints
company
const
client

const

fy(x) = wT (x, y)

y⇤ = argmaxyw
T (x, y)

minw,⇠
1

2
kwk2 + C

n

nX

i=1

⇠i

subject to:

w>( (xi, yi)� (xi, y
0)) � �(yi, y

0)� ⇠i

8 i = 1, . . . , n; y0 6= yi

minw,⇠
1

2
||w||2 + �

X

i

⇠i

subject to:

wT (xi, yi)�wT (xi, y
0) � �(yi, y

0)� ⇠i

8i, 8y0 6= yi

⇠i = maxy02Si�(yi, y
0) +wT (xi, y

0)�wT (xi, yi)

⇠newi = maxy0 6=yi�(yi, y
0) +wT (xi, y

0)�wT (xi, yi)

⇠i = maxy02Si�(yi, y
0) +wT (xi, y

0)�wT (xi, yi)

⇠newi = maxy0 6=yi�(yi, y
0) +wT (xi, y

0)�wT (xi, yi)

⇠newi � ⇠i > ✏
Si
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Results for “A”

Results for “A”

Results for “B”

Figure 10: Results for the 8 ⇥ 8 character drawing task, “A” and ”B”. The training
instances are lined up in the first row of each table, followed by the test results. The
generated vectorial representations are shown overlayed over the corresponding image.
The segments are colored for readability.
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instances are lined up in the first row of each table, followed by the test results. The
generated vectorial representations are shown overlayed over the corresponding image.
The segments are colored for readability.
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Results for “B”

Results for “A”

Results for “B”

Figure 10: Results for the 8 ⇥ 8 character drawing task, “A” and ”B”. The training
instances are lined up in the first row of each table, followed by the test results. The
generated vectorial representations are shown overlayed over the corresponding image.
The segments are colored for readability.
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instances are lined up in the first row of each table, followed by the test results. The
generated vectorial representations are shown overlayed over the corresponding image.
The segments are colored for readability.
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Results for “C”

Results for “C”

Results for “D”

Figure 11: Results for the character drawing task, “C” and “D”.
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Results for “D”

Results for “C”

Results for “D”

Figure 11: Results for the character drawing task, “C” and “D”.
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Results for “E”
Results for “E”

Figure 12: Results for the character drawing task, “E”.
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Figure 12: Results for the character drawing task, “E”.
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Pyconstruct:  
a library for declarative structured-output learning 

 [IJCAI 2018]



Going deep:  
Deep declarative structured-output learning 




Experimental results



Deep nets fail to learn semantics

Figure 2: Percentage of erroneously predicted equations by the CNN (left) and by the CNN + LSTM (right) on the test set with increasing
training set size. The violet line indicates the percentage of total errors over the test set size. The shaded areas decompose errors into syntactic
and semantic errors. Best viewed in colors.

in Equation 5, and including the Hamming distance between
y and ŷ (see again Figure 1). A summary of the features and
constraints used in the structured predictor is given in Table 1.

Combined model After training the convolutional net-
work, we combine it with the CST as described in Section 3.
Using the predictions ŷi of the CNN, we create a new dataset
{(xi, ŷi, yi)}ni=1 with which we train the constrained struc-
tured model. We train the CST model using the structured
SVMs method with stochastic subgradient descent [Ratliff et
al., 2007] for one epoch over the training set. The structured
loss used in this task is the Hamming distance between the
predicted sequence of symbols and the true sequence. In prin-
ciple, the full vector of confidence values returned by the soft-
max output layer of the network may be used in the CST. We
evaluated this variant as well but it did not perform better than
just using the prediction with highest confidence score.

Figure 3 shows the learning curves resulting from the ex-
periments using the Hamming loss. In the left plot we com-
pare the combined model (CNN + CST) with the single com-
ponents, i.e., the CNN and the CST in the original vari-
ant [Dragone et al., 2018b], and the CNN + LSTM cascade.
The general trend is rather clear, the CNN has always an edge
over the CST, yet their combination always performs better
than both. As expected, the gap between the CNN and the
combined model is maximal for the smallest dataset, but it re-
mains clearly evident when the curves start to level off (82.9%
relative error reduction at the last iteration). The loss of the
CNN + LSTM model is overall slightly higher than the one
of the CNN model, consistent with what happens for the mis-
classification error (see Figure 2).

We then computed the breakdown of the CNN + CST re-
sults by features of the CST model (see Table 1). When con-
sidering distance only, we set its weight w� to a negative
value, so as to minimize the distance between the prediction
of the network and the refined prediction while satisfying the

constraints, without any learning on the CST side. We then
decomposed the features of the full combined model into: [i]
refinement; [ii] refinement + distance; [iii] refinement + pre-
diction. The right plot in Figure 3 shows the learning curves
for each of these variants. The distance feature is clearly the
least effective, even if it already improves over the CNN alone
(29.6% relative error reduction at the last iteration). The other
features perform quite similarly, but combining all features
together achieves the overall best performance.

5 Related work

Integrating relational models and deductive reasoning with
inductive learning models has been a long time interest in AI.
The field of statistical relational learning (SRL) [Getoor and
Taskar, 2007] has produced a plethora of different method-
ologies for embedding prior knowledge, usually expressed
in some logical formalism, into statistical learning frame-
works, with a particular emphasis on probabilistic graphi-
cal models. Examples of SRL techniques include models
such as Relational Bayesian Networks [Jaeger, 1997] and
Markov Logic Networks [Richardson and Domingos, 2006],
as well as probabilistic logic programming languages like
ProbLog [De Raedt et al., 2007]. In SRL, the logical frame-
work (either propositional or first order logic) is used to de-
fine the structure of the data, i.e. the known or likely rela-
tionships between the variables, which are then weighted and
refined by inductive learning from data. These formalisms
are typically conceived for discrete data. While hybrid ver-
sions of many of the formalisms [Wang and Domingos, 2008;
Gutmann et al., 2011] have been proposed to model contin-
uous variables, effectively dealing with low-level inputs (like
pixels in an image) is beyond the scope of these frameworks.

Traditionally, the most popular approaches for structured
prediction are Conditional Random Fields (CRF) [Lafferty et
al., 2001] and structured-output SVMs [Tsochantaridis et al.,



Constructive preference elicitation

•  Preference elicitation 
selects the most 
preferred item in a 
catalogue of candidates

•  Constructive preference 
elicitation aims at 
synthesising the most 
preferred configuration 
given a set of constraints



Examples: assembly

compose a basket assemble a PC

modify a recipe



Examples: layout synthesis

building design interior design

urban planning



Examples: the ultimate cocktail machine!



Plain preference elicitation



Constructive preference elicitation



• User utility as weighted combination of item features 

• Recommendation as utility maximisation

•  Interactive approaches to learn utility weights
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Leveraging proactive users 
[ECMLPKDD 2018, RECSYS 2018] 

• Most interactive approaches ask for pairwise (or 
setwise) preferences

• The set of candidates is predetermined

• Ask user to improve current solution (coactive learning) 

• Improvements over features or objects

PROBLEM

SOLUTION



Coactive learning  
(Shivaswamy & Joachims, 2012)



Coactive learning (CL)

procedure SetMargin(T, k)
D  ;
for t = 1, . . . , T do

{wi,xi}ki=1  Solve(D, k)
D  D [QueryUser({x1, . . . ,xk})

procedure cp (T )
w1  0
for t = 1, . . . , T do

Receive context xt from the user
Qt  SelectQuery(xt,wt)
User chooses ȳt from Qt

wt+1  wt +'(xt, ȳt)� 1
k�1

P
y2Qt:y 6=ȳt '(xt, y)

procedure CL(T )
w1  0
for t = 1, . . . , T do

Receive context xt from the user
yt  argmaxy2Y hwt,'(xt, y)i
ȳt  QueryImprovement(xt, yt)
wt+1  wt +'(xt, ȳt)�'(xt, yt)

procedure CC('1, T )
w1  0, D  ;
for t = 1, . . . , T do

Receive context xt from the user
yt  argmaxy2Yhwt,'t(xt, y)i
ȳt  QueryImprovement(xt, yt)
D  D [ {(xt, yt, ȳt)}
if NeedCritique(D,'t) then

⇢ QueryCritique(xt, yt, ȳt)
't  't � [⇢]
wt  wt � [0]

wt+1  wt +'t(xt, ȳt)�'t(xt, yt)
't+1  't

2



Layout synthesis: user interaction

RecSys’17, August 2017, Como, Italy anonymous

Figure 1: Examples of visual improvement that a user may perform. An image of a con�gurations � proposed by the system is
followed by an image of an improvementmade by the user. For the setting on the left, there is a feature-level improvement, e.g.
the user sets the minimum distance between tables (a feature) to a higher value. The right setting has, instead, a object-level
improvement, e.g. the user manually modi�es the object shape by adding a new wall. Best viewed in color.

maximizes the estimated utility function given context xt :

�t = argmax
�2Y

hwt ,� (xt ,�)i (2)

In layout synthesis, objects can be represented by combinations of
Boolean, integer and continuous attribute variables. In this case,
the above maximization problem becomes a mixed integer program
(MIP). The di�culty of the problem greatly depends on the type
of constraint and features used. When both hard constraints and
features are linear functions of the attributes �, the above problem
becomes a mixed integer linear program (MILP). While being NP-
hard in the general case, MILP problems with hundreds of variables
can be quickly solved to optimality by existing o�-the-shelf solvers.
For problems that are too complex for exact solution strategies,
approximation techniques can be used to speed-up the inference
process. Reasonably sub-optimal synthesized layouts do not sig-
ni�cantly alter the performance of Coactive Learning, as proven
theoretically in [16] and shown empirically by our experiments.
While in this paper we focus on a MILP formulation for layout
synthesis problems, the overall framework can readily incorporate
more expressive formulations based on, e.g. quadratic terms. This
point is discussed further in the conclusion of the paper.

5 EXPERIMENTS
We evaluated our system on two di�erent tasks. In the �rst ex-
periment, the system recommends table arrangements in a room,
like a bar or an o�ce. The second experiment consists in a space
partitioning task, in which the system suggests how to partition
the surface of an apartment into rooms. In both settings we make a
quantitative evaluation, i.e. we compare the regret of the system
for increasing levels of problem complexity. As the problem com-
plexity increases, approximate solutions become necessary to keep
real-time interaction. As an approximate inference heuristic we
set a time cut-o� to the solver and return the best solution found
in that time. Regret bounds similar to Eq. 1 can be found also in
approximate settings [16]. We evaluate empirically the e�ect of
using approximate inference on the quality of the recommenda-
tions in both settings. All the quantitative experiments were run
over 20 randomly generated users and averaged over them. The
user responses are simulated following the �-informative feedback
model used in Coactive Learning [19]. As mentioned in Section 3,
the � parameter can describe the user expertise in providing good
improvements over the system recommendation. We assume no
user expertise required to interact usefully with our system, and

thus we set � = 0.1 to simulate a non-expert user. Furthermore, we
assume that changes made by the user are small, in order to keep
her e�ort to a minimum. We thus take a conservative approach and
simulate the user behavior by selecting a “minimal” �-informative
improvement (more details below). We consider two types of user
improvements, as exempli�ed in Figure 1. In the �rst experiment
we use a feature-based improvement, in which a user may variate
the value of a feature (e.g. with a simple set of UI controllers) to gen-
erate a better con�guration. In the left example of Figure 1, the user
sets the minimum distance between the tables to a higher value. The
second type of improvement considered is an object-based improve-
ment, in which the user directly shapes the con�guration by adding,
moving or removing parts. This is the case in the right example
of Figure 1, in which the user adds a wall to create a new room.
The details of the user feedback simulation models are reported in
the corresponding subsections. In both experimental settings, we
also report a qualitative evaluation showcasing the behavior of the
system in interacting with some “prototypical” type of user (e.g. a
cafè owner arranging the tables in her place). We show that the
system achieves the goal of �nding good con�gurations matching
the user taste.

The system is implemented in Python2 and uses MiniZinc as
a modelling language for constrained optimization problems [13],
and an external MILP solver3 for the inference (Eq. 2) and the
improvement problems. All the experiments were run on a 2.8 GHz
Intel Xeon CPU with 8 cores and 32 GiB of RAM.

5.1 Furniture arrangement
In the �rst experimental setting, the goal of the system is to learn to
arrange tables in a room according to the user preferences. Rooms
are 2D spaces of di�erent shapes. We model the rooms as squared
bounding boxes, plus several inaccessible areas making up internal
walls. The size of the bounding box and the inaccessible areas are
given in the context x , together with the number of tables to place.
The available space is discretized into unit squares of �xed size.
Tables are rectangles of di�erent shape occupying one or more unit
squares. The output objects � consist in the table arrangements
in the given room. More precisely, tables are represented by their
bottom-left coordinates (h, �) in the bounding box and their sizes
(dh, d�) in horizontal and vertical directions. The object � contains
the coordinates (ht , �t ) and the sizes (dht , d�t ) of each table t .
Several constraints are imposed to de�ne the feasible con�gurations.
2Code available at: URLANONYMIZED
3Opturion CPX: http://opturion.com
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followed by an image of an improvementmade by the user. For the setting on the left, there is a feature-level improvement, e.g.
the user sets the minimum distance between tables (a feature) to a higher value. The right setting has, instead, a object-level
improvement, e.g. the user manually modi�es the object shape by adding a new wall. Best viewed in color.
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In layout synthesis, objects can be represented by combinations of
Boolean, integer and continuous attribute variables. In this case,
the above maximization problem becomes a mixed integer program
(MIP). The di�culty of the problem greatly depends on the type
of constraint and features used. When both hard constraints and
features are linear functions of the attributes �, the above problem
becomes a mixed integer linear program (MILP). While being NP-
hard in the general case, MILP problems with hundreds of variables
can be quickly solved to optimality by existing o�-the-shelf solvers.
For problems that are too complex for exact solution strategies,
approximation techniques can be used to speed-up the inference
process. Reasonably sub-optimal synthesized layouts do not sig-
ni�cantly alter the performance of Coactive Learning, as proven
theoretically in [16] and shown empirically by our experiments.
While in this paper we focus on a MILP formulation for layout
synthesis problems, the overall framework can readily incorporate
more expressive formulations based on, e.g. quadratic terms. This
point is discussed further in the conclusion of the paper.

5 EXPERIMENTS
We evaluated our system on two di�erent tasks. In the �rst ex-
periment, the system recommends table arrangements in a room,
like a bar or an o�ce. The second experiment consists in a space
partitioning task, in which the system suggests how to partition
the surface of an apartment into rooms. In both settings we make a
quantitative evaluation, i.e. we compare the regret of the system
for increasing levels of problem complexity. As the problem com-
plexity increases, approximate solutions become necessary to keep
real-time interaction. As an approximate inference heuristic we
set a time cut-o� to the solver and return the best solution found
in that time. Regret bounds similar to Eq. 1 can be found also in
approximate settings [16]. We evaluate empirically the e�ect of
using approximate inference on the quality of the recommenda-
tions in both settings. All the quantitative experiments were run
over 20 randomly generated users and averaged over them. The
user responses are simulated following the �-informative feedback
model used in Coactive Learning [19]. As mentioned in Section 3,
the � parameter can describe the user expertise in providing good
improvements over the system recommendation. We assume no
user expertise required to interact usefully with our system, and

thus we set � = 0.1 to simulate a non-expert user. Furthermore, we
assume that changes made by the user are small, in order to keep
her e�ort to a minimum. We thus take a conservative approach and
simulate the user behavior by selecting a “minimal” �-informative
improvement (more details below). We consider two types of user
improvements, as exempli�ed in Figure 1. In the �rst experiment
we use a feature-based improvement, in which a user may variate
the value of a feature (e.g. with a simple set of UI controllers) to gen-
erate a better con�guration. In the left example of Figure 1, the user
sets the minimum distance between the tables to a higher value. The
second type of improvement considered is an object-based improve-
ment, in which the user directly shapes the con�guration by adding,
moving or removing parts. This is the case in the right example
of Figure 1, in which the user adds a wall to create a new room.
The details of the user feedback simulation models are reported in
the corresponding subsections. In both experimental settings, we
also report a qualitative evaluation showcasing the behavior of the
system in interacting with some “prototypical” type of user (e.g. a
cafè owner arranging the tables in her place). We show that the
system achieves the goal of �nding good con�gurations matching
the user taste.

The system is implemented in Python2 and uses MiniZinc as
a modelling language for constrained optimization problems [13],
and an external MILP solver3 for the inference (Eq. 2) and the
improvement problems. All the experiments were run on a 2.8 GHz
Intel Xeon CPU with 8 cores and 32 GiB of RAM.

5.1 Furniture arrangement
In the �rst experimental setting, the goal of the system is to learn to
arrange tables in a room according to the user preferences. Rooms
are 2D spaces of di�erent shapes. We model the rooms as squared
bounding boxes, plus several inaccessible areas making up internal
walls. The size of the bounding box and the inaccessible areas are
given in the context x , together with the number of tables to place.
The available space is discretized into unit squares of �xed size.
Tables are rectangles of di�erent shape occupying one or more unit
squares. The output objects � consist in the table arrangements
in the given room. More precisely, tables are represented by their
bottom-left coordinates (h, �) in the bounding box and their sizes
(dh, d�) in horizontal and vertical directions. The object � contains
the coordinates (ht , �t ) and the sizes (dht , d�t ) of each table t .
Several constraints are imposed to de�ne the feasible con�gurations.
2Code available at: URLANONYMIZED
3Opturion CPX: http://opturion.com

feature manipulation

object manipulation



Layout synthesis: furniture arrangement
Constructive Layout Synthesis and Recommendation RecSys’17, August 2017, Como, Italy

Initial Intermediate Final

Café

O�ce

Figure 3: Two use cases of our system. The images are 3D renderings of con�gurations recommended by our system when
interacting with users whose goal is to furnish a café (top) and an o�ce (bottom). Horizontally, the �gures show di�erent
stages of the elicitation process. In the café, 1 ⇥ 1 and 1 ⇥ 2 tables are seen as dining tables of di�erent sizes, whereas in the
o�ce 1 ⇥ 2 tables represent desks while 1 ⇥ 1 tables contain utilities such as printers. Best viewed in colors.

Initial Intermediate Final

Flat

Loft

Figure 4: Two use cases of our system for the task of �oor planning. The images are 3D renderings of con�gurations recom-
mended by our system when interacting with users whose goal is to build a �at (top) and an loft (bottom). Horizontally, the
�gures show di�erent stages of the elicitation process. Room colors are associated to room types: the kitchen is in red, the
living room is in blue, the bathroom is in turquoise, the bedroom in green, the corridor is in violet. Best viewed in colors.



Layout synthesis: floor planning

Constructive Layout Synthesis and Recommendation RecSys’17, August 2017, Como, Italy
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interacting with users whose goal is to furnish a café (top) and an o�ce (bottom). Horizontally, the �gures show di�erent
stages of the elicitation process. In the café, 1 ⇥ 1 and 1 ⇥ 2 tables are seen as dining tables of di�erent sizes, whereas in the
o�ce 1 ⇥ 2 tables represent desks while 1 ⇥ 1 tables contain utilities such as printers. Best viewed in colors.
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Figure 4: Two use cases of our system for the task of �oor planning. The images are 3D renderings of con�gurations recom-
mended by our system when interacting with users whose goal is to build a �at (top) and an loft (bottom). Horizontally, the
�gures show di�erent stages of the elicitation process. Room colors are associated to room types: the kitchen is in red, the
living room is in blue, the bathroom is in turquoise, the bedroom in green, the corridor is in violet. Best viewed in colors.



Leveraging user explanations 
[AAAI, 2017]

• Most interactive learning approaches assume 
predefined feature space

• Users often realise requirements during process

• Identify when feature space is insufficient

• Ask user to explain improvement (coactive critiquing)

PROBLEM

SOLUTION



Solution: coactive critiquing

eliciting local improvements (coactive learning)
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Solution: coactive critiquing

asking for explanations if needed (critiquing)



Coactive critiquing algorithm (CC) 

procedure SetMargin(T, k)
D  ;
for t = 1, . . . , T do

{wi,xi}ki=1  Solve(D, k)
D  D [QueryUser({x1, . . . ,xk})

procedure cp (T )
w1  0
for t = 1, . . . , T do

Receive context xt from the user
Qt  SelectQuery(xt,wt)
User chooses ȳt from Qt

wt+1  wt +'(xt, ȳt)� 1
k�1

P
y2Qt:y 6=ȳt '(xt, y)

procedure CL(T )
w1  0
for t = 1, . . . , T do

Receive context xt from the user
yt  argmaxy2Y hwt,'(xt, y)i
ȳt  QueryImprovement(xt, yt)
wt+1  wt +'(xt, ȳt)�'(xt, yt)

procedure CC('1, T )
w1  0, D  ;
for t = 1, . . . , T do

Receive context xt from the user
yt  argmaxy2Yhwt,'t(xt, y)i
ȳt  QueryImprovement(xt, yt)
D  D [ {(xt, yt, ȳt)}
if NeedCritique(D,'t) then

⇢ QueryCritique(xt, yt, ȳt)
't  't � [⇢]
wt  wt � [0]

wt+1  wt +'t(xt, ȳt)�'t(xt, yt)
't+1  't

2



Experimental results: CC vs CL

Figure 1: Left: comparison of CC for different choices of NEEDCRITIQUE procedure; median utility loss at the top, average
number of acquired features at the bottom. Middle: comparison between CC and CL on the synthetic problem. Right: comparison
between CC and CL on the trip planning problem. Best viewed in color.

In critiquing queries (line 8), the user is asked to re-
turn the critique ⇢ contributing the most to the utility gain
of x̄t over xt. Formally, the contribution of feature �⇤

i is
ci := w⇤

i (�
⇤
i (x̄

t) � �⇤
i (x

t)). Ideally, the user would re-
spond with the feature ⇢ with the highest contribution (with
ties broken at random). In practice, she may choose a sub-
optimal critique. We simulate user noise by sampling ⇢ from
a multinomial distribution where the probability of choos-
ing �⇤

i is set to ci/
P

i ci. This model favors features with
higher contribution, while still leaving room for sub-optimal
choices.

Synthetic Experiment. First, we evaluate our method on
a synthetic task. The configurations are 2D points x with in-
teger coordinates, taking values in a discrete bounding box
of size 100 ⇥ 100, for a total of 104 feasible configura-
tions. There are 50 rectangles r1, . . . , r50 inside the bound-
ing box. The position and size of the rectangles are sampled
uniformly at random once and kept fixed for all runs. Each
feature �⇤

i (x), i = 1, . . . , 50, acts as an indicator for the cor-
responding rectangle ri: it evaluates to 1 if x is within the
rectangle, and to �1 otherwise. The true weights w⇤ 2 R50

establish a preference over the rectangles: if w⇤
i > 0 the user

prefers configurations contained in ri, and outside of it oth-
erwise. It can be readily seen that most features are uncor-
related, and thus a sufficiently expressive subset of features
is needed to find an optimal solution. The inference and im-
provement simulators were implemented as mixed integer-
linear problems and solved accordingly.

First, we compare our NEEDCRITIQUE heuristic against

an uninformed baseline randomly choosing when to ask for
critiques. Specifically, we replace our heuristic at line 7
with a binomial distribution, varying the parameter ✓ 2
{0.25, 0.5, 0.75, 1}.

We run all methods over 20 users independently sam-
pled from a 50-dimensional standard normal distribution.
We compute the median utility loss u⇤(x⇤) � u⇤(xt) over
all users (the lower, the better) as well as the average num-
ber of acquired features. Execution times are omitted, as the
difference between algorithms is negligible. We report the
results in the left column of Figure 1. As shown by the plots,
our heuristic strikes a good balance between user satisfac-
tion and cognitive effort. In terms of utility loss, it fares
in-between the ✓ = 1 (most informed baseline) and the
✓ = 0.75 (second most informed) variants, while eliciting
fewer critiques than both. The other baselines are not up to
par.

Next, we compare CC with our NEEDCRITIQUE heuris-
tic against CL. CC always starts from 2 features and ac-
quires new ones dynamically through query critiques. In
contrast, CL has fixed access to p% of the features, for
p 2 {20, 40, . . . , 100}. In order not to bias the results, for
each p we take the average of five different CL runs, each
over a randomly drawn subspace of �⇤(x) of the appropri-
ate size. We refer to this setting as CLp. Given that there is
no standard, accepted way to estimate the real cognitive cost
of replying to improvement or critique queries, we avoid
computing a single unified measure of user effort and rather
count the number of queries separately. We report the results
in the middle column of Figure 1.

In median, CL100 reaches zero loss after 11 iterations,



• Most preference elicitation approaches assume 
predefined feature space

• It is often difficult for users to provide explicit features

• Learn features in coactive mode (deep coactive 
learning)

PROBLEM

SOLUTION

Going deep:  
Dealing with unknown features 




ReLU Neural Networks

objective features

subjective features

input attributes

utility



Learn objective features 

• Train a NN to predict “objective” features from 
attributes (e.g. sweet, spicy)

• Train with feedback from multiple users (i.e. 
“objective” as average over users) 

input attributes

objective features



From objective features to user utility

• Compose with user-specific component:

• from objective to subjective features 

• from subjective features to utility score (preference)

objective features

subjective features

user utility



Optimize over input to get recommendation

input attributes

user utility
max
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Coactive feedback backpropagation

procedure CC('1, T )
w1  0, D  ;
for t = 1, . . . , T do

Receive context xt from the user
yt  argmaxy2Yhwt,'t(xt, y)i
ȳt  QueryImprovement(xt, yt)
D  D [ {(xt, yt, ȳt)}
if NeedCritique(D,'t) then

⇢ LearnCritique(xt, yt, ȳt)
't  't � [⇢]
wt  wt � [0]

wt+1  wt +'t(xt, ȳt)�'t(xt, yt)
't+1  't

�obj(x̂)

�obj
spicy(x̂)

W sub

W sub = W sub + ⌘rW sub

 
@ u(x)

@ �obj
spicy(x)

!

x=x̂

3

procedure CC('1, T )
w1  0, D  ;
for t = 1, . . . , T do

Receive context xt from the user
yt  argmaxy2Yhwt,'t(xt, y)i
ȳt  QueryImprovement(xt, yt)
D  D [ {(xt, yt, ȳt)}
if NeedCritique(D,'t) then

⇢ LearnCritique(xt, yt, ȳt)
't  't � [⇢]
wt  wt � [0]

wt+1  wt +'t(xt, ȳt)�'t(xt, yt)
't+1  't

�obj(x)

�obj
spicy(x)

W sub

3

procedure CC('1, T )
w1  0, D  ;
for t = 1, . . . , T do

Receive context xt from the user
yt  argmaxy2Yhwt,'t(xt, y)i
ȳt  QueryImprovement(xt, yt)
D  D [ {(xt, yt, ȳt)}
if NeedCritique(D,'t) then

⇢ LearnCritique(xt, yt, ȳt)
't  't � [⇢]
wt  wt � [0]

wt+1  wt +'t(xt, ȳt)�'t(xt, yt)
't+1  't

�obj(x̂)

�obj
spicy(x̂)

W sub

3

procedure CC('1, T )
w1  0, D  ;
for t = 1, . . . , T do

Receive context xt from the user
yt  argmaxy2Yhwt,'t(xt, y)i
ȳt  QueryImprovement(xt, yt)
D  D [ {(xt, yt, ȳt)}
if NeedCritique(D,'t) then

⇢ LearnCritique(xt, yt, ȳt)
't  't � [⇢]
wt  wt � [0]

wt+1  wt +'t(xt, ȳt)�'t(xt, yt)
't+1  't

�obj(x̂)

�obj
spicy(x̂)

W sub

3

I would like it more spicy

procedure CC('1, T )
w1  0, D  ;
for t = 1, . . . , T do

Receive context xt from the user
yt  argmaxy2Yhwt,'t(xt, y)i
ȳt  QueryImprovement(xt, yt)
D  D [ {(xt, yt, ȳt)}
if NeedCritique(D,'t) then

⇢ LearnCritique(xt, yt, ȳt)
't  't � [⇢]
wt  wt � [0]

wt+1  wt +'t(xt, ȳt)�'t(xt, yt)
't+1  't

�obj(x̂)

�obj
spicy(x̂)

W sub

u(x̂)

W sub = W sub + ⌘rW sub

 
@ u(x)

@ �obj
spicy(x)

!

x=x̂

ŷ = min
y2Y

f(x̂, y)

ŷ0 = min
y2Y

f(x̂0, y) + � `(y, ŷ)

hx̂, ŷi ! hx̂0, ?i

3
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Thank you, questions?



Smart Plan: navigation 
   



Smart Plan: suggesting changes 



Smart Plan: experimental setup

System Interface Algorithm

CC Constructive Constructive

CP Constructive Pool

PP Pool Pool

• Between groups experiment


• Comparison against pool-based 
approaches


• Pool algorithm: algorithm can choose 
from (large) pool of options


• Pool interface: user can choose from 
(small) pool of option



Smart Plan: quantitative results

• 29% more satisfactory interactions

• 3.5 interactions less to satisfactory 
plan

• 2.9 minutes less to satisfactory plan



Preference elicitation example: housing

MAX-SMT formulation 

var description var description
x1 has garden x2 has park nearby
x3 crime rate x4 distance from parents
x5 distance from kindergarten

 1 = (¬x2 ) x1)
 2 = (x3  ✓1)
 3 = (x4  ✓2)
 4 = (x5  ✓3)

price(x) = 300000

x4 � ✓4

x5 � ✓5

maxx w1 1 + w2 2 + w3( 3 ^  4)

 1 ) c1 = 0
 2 ) c2 = 0
 3 ) c3 = 0
 4 ) c4 = 0

¬ 1 ) c1 = w1

¬ 2 ) c2 = w2 ⇤ (x3 � ✓1)
¬ 3 ) c3 = w3 ⇤ (x4 � ✓2)
¬ 4 ) c4 = w4 ⇤ (x5 � ✓3)

minx c1 + c2 + c3 + c4

subject to:

1

var description var description
x1 has garden x2 has park nearby
x3 crime rate x4 distance from parents
x5 distance from kindergarten

 1 = (¬x2 ) x1)
 2 = (x3  ✓1)
 3 = (x4  ✓2)
 4 = (x5  ✓3)

price(x) = 300000

x4 � ✓4

x5 � ✓5

maxx w1 1 + w2 2 + w3( 3 ^  4)

 1 ) c1 = 0
 2 ) c2 = 0
 3 ) c3 = 0
 4 ) c4 = 0

¬ 1 ) c1 = w1

¬ 2 ) c2 = w2 ⇤ (x3 � ✓1)
¬ 3 ) c3 = w3 ⇤ (x4 � ✓2)
¬ 4 ) c4 = w4 ⇤ (x5 � ✓3)

minx c1 + c2 + c3 + c4

subject to:

1

client soft 
constraints

client utility

right(1, 2) := x2 + dx2 = x1^
((y1  y2  y1 + dy1) _ (y1  y2 + dy2  y1 + dy1))

left step(i, j) := (left(i, j) ^ (yi + dyi) > (yj + dyj))

_ (over(i, j) ^ (xi + dxi) < (xj + dxj))

var description var description
y1 has garden y2 has park nearby
y3 crime rate y4 distance from parents
y5 distance from kindergarten

 1 = (¬y2 ) y1)

 2 = (y3  ✓1)

 3 = (y4  ✓2)

 4 = (y5  ✓3)

price(x)  300000

y4 � ✓4

y5 � ✓5

maxx w1 1 + w2 2 + w3( 3 ^  4)

 1 ) c1 = 0

 2 ) c2 = 0

 3 ) c3 = 0

 4 ) c4 = 0

2

company hard 
constraints

client hard constraints

right(1, 2) := x2 + dx2 = x1^
((y1  y2  y1 + dy1) _ (y1  y2 + dy2  y1 + dy1))

left step(i, j) := (left(i, j) ^ (yi + dyi) > (yj + dyj))

_ (over(i, j) ^ (xi + dxi) < (xj + dxj))

var description var description
y1 has garden y2 has park nearby
y3 crime rate y4 distance from parents
y5 distance from kindergarten

 1 = (¬y2 ) y1)

 2 = (y3  ✓1)

 3 = (y4  ✓2)

 4 = (y5  ✓3)

price(y)  300000

y4 � ✓4

y5 � ✓5

maxx w1 1 + w2 2 + w3( 3 ^  4)

 1 ) c1 = 0

 2 ) c2 = 0

 3 ) c3 = 0

 4 ) c4 = 0

2

right(1, 2) := x2 + dx2 = x1^
((y1  y2  y1 + dy1) _ (y1  y2 + dy2  y1 + dy1))

left step(i, j) := (left(i, j) ^ (yi + dyi) > (yj + dyj))

_ (over(i, j) ^ (xi + dxi) < (xj + dxj))

var description var description
y1 has garden y2 has park nearby
y3 crime rate y4 distance from parents
y5 distance from kindergarten

 1 = (¬y2 ) y1)

 2 = (y3  ✓1)

 3 = (y4  ✓2)

 4 = (y5  ✓3)

price(y)  300000

y4 � ✓4

y5 � ✓5

maxx w1 1 + w2 2 + w3( 3 ^  4)

 1 ) c1 = 0

 2 ) c2 = 0

 3 ) c3 = 0

 4 ) c4 = 0

2

right(1, 2) := x2 + dx2 = x1^
((y1  y2  y1 + dy1) _ (y1  y2 + dy2  y1 + dy1))

left step(i, j) := (left(i, j) ^ (yi + dyi) > (yj + dyj))

_ (over(i, j) ^ (xi + dxi) < (xj + dxj))

var description var description
y1 has garden y2 has park nearby
y3 crime rate y4 distance from parents
y5 distance from kindergarten

 1 = (¬y2 ) y1)

 2 = (y3  ✓1)

 3 = (y4  ✓2)

 4 = (y5  ✓3)

price(x)  300000

y4 � ✓4

y5 � ✓5

maxx w1 1 + w2 2 + w3( 3 ^  4)

 1 ) c1 = 0

 2 ) c2 = 0

 3 ) c3 = 0

 4 ) c4 = 0

2

`

I would like a house in a safe area, 
close to my parents and the 

kindergarten, with a garden if there 
are no parks nearby. My maximum 

budget is 300,000 euro.



housing revisited
I would like a house in a safe area, 

close to my parents and the 
kindergarten, with a garden if there 
are no parks nearby. My maximum 

budget is 300,000 euro.

Who is capable of such a precise 
and exhaustive explanation?



Solving an unknown MAT-SMT problem 

•  exact problem formulation unknown

•  set of candidate catalogue features is 
available

•  set of candidate constraints over the 
features 

• true (unknown) utility is the weighted sum 
of few constraints over few features

•  DM feedback as pairwise preferences 
btw solutions

help!!!



Problem formulation: catalogue features

set of features characterising candidate solutions

feature Description type
y1 house type ord
y2 garden Bool
y3 garage Bool
y4 commercial facilities nearby Bool
y5 public green areas nearby Bool
y6 distance from downtown num
y7 crime rate num
y9 public transit service quality index num
y10 distance from parents house num
.... ... ...

constraint Description formula
 1 has garden p1
 2 garden if no park nearby ¬p3 ! p1
 3 good transportation ¬p4 ! p6

if far from downtown
 4 garage if high crime rate ¬p5 ! p2
.... ... ...

predicate Description formula
p1 has garden y2
p2 has garage y3
p3 has park nearby y5
p4 close to downtown y6 < ✓1
p5 low crime rate area y7 < ✓2
p6 high quality transit service y8 > ✓3
.... ... ...

sign f(x) = sign wTx

f(x) =
X

i

↵iK(yi,x)

increasing(1) ^ head2tail(1, 2) ^
increasing(2) ^ head2tail(2, 3) ^
decreasing(3) ^ head2head(3, 4) ^
horizontal(4) ^ head2tail(4, 5) ^
decreasing(5)

cost := (maxshl,minshl,maxshr,minshr,

maxswl,minswl,maxswr,minswr, vmat, hmat) w

1



Problem formulation: possible predicates

all predicates constructible with candidate features

constraint Description formula
 1 has garden p1
 2 garden if no park nearby ¬p3 ! p1
 3 good transportation ¬p4 ! p6

if far from downtown
 4 garage if high crime rate ¬p5 ! p2
.... ... ...

predicate Description formula
p1 has garden y2
p2 has garage y3
p3 has park nearby y5
p4 close to downtown y6 < ✓1
p5 low crime rate area y7 < ✓2
p6 high quality transit service y8 > ✓3
.... ... ...

sign f(x) = sign wTx

f(x) =
X

i

↵iK(xi,x)

increasing(1) ^ head2tail(1, 2) ^
increasing(2) ^ head2tail(2, 3) ^
decreasing(3) ^ head2head(3, 4) ^
horizontal(4) ^ head2tail(4, 5) ^
decreasing(5)

cost := (maxshl,minshl,maxshr,minshr,

maxswl,minswl,maxswr,minswr, vmat, hmat) w

minswr = m⇥ min
i2[1,m�1]

(
(xi+1 + dxi+1)� (xi + dxi) if i, i+ 1 form a right step

0 otherwise

argmax
x2,y2,dx2,dy2

w1dx2 + w2dy2

cost := w>( increasing(i), decreasing(i), right(i)| {z }
for all segments i

,

h2t(i, i+ 1), t2h(i, i+ 1), h2h(i, i+ 1), t2t(i, i+ 1)| {z }
for all segments i

,

coverage)

1



Problem formulation: possible constraints

all constraints constructible with candidate predicates 
(combinations of up to d predicates)

constraint Description formula
 1 has garden p1

 2 garden if no park nearby ¬p3 ! p1

 3 good transportation ¬p4 ! p6

if far from downtown
 4 garage if high crime rate ¬p5 ! p2

.... ... ...

predicate Description formula
p1 has garden x2

p2 has garage x3

p3 has park nearby x5

p4 close to downtown x6 < ✓1
p5 low crime rate area x7 < ✓2
p6 high quality transit service x8 > ✓3
.... ... ...

sign f(x) = sign wT x

f(x) =
X

i

↵iK(xi,x)

increasing(1) ^ head2tail(1, 2) ^
increasing(2) ^ head2tail(2, 3) ^
decreasing(3) ^ head2head(3, 4) ^
horizontal(4) ^ head2tail(4, 5) ^
decreasing(5)

cost := (maxshl,minshl, maxshr,minshr,

maxswl,minswl,maxswr,minswr, vmat, hmat) w

minswr = m⇥ min
i2[1,m�1]

(
(xi+1 + dxi+1)� (xi + dxi) if i, i + 1 form a right step
0 otherwise

arg max
x2,y2,dx2,dy2

w1dx2 + w2dy2

cost := w>( increasing(i), decreasing(i), right(i)| {z }
for all segments i

,

h2t(i, i + 1), t2h(i, i + 1), h2h(i, i + 1), t2t(i, i + 1)| {z }
for all segments i

,

coverage)

1



User utility

• (Unknown) user utility linear combination of some constraints

• Scoring function linear combination of all candidate 
constraints

• Need to learn the few non-zero weights

• User feedback as pairwise preference btw candidate 
solutions

minw,⇠
1

2
||w||2 + �

X

i

⇠i

subject to:

wT'(yi, yi)�wT'(yi, y
0) � �(yi, y

0)� ⇠i

8i, 8y0 6= yi

⇠i = maxy02Si�(yi, y
0) +wT'(yi, y

0)�wT'(yi, yi)

⇠newi = maxy0 6=yi�(yi, y
0) +wT'(yi, y

0)�wT'(yi, yi)

⇠i = maxy02Si�(yi, y
0) +wT'(yi, y

0)�wT'(yi, yi)

⇠newi = maxy0 6=yi�(yi, y
0) +wT'(yi, y

0)�wT'(yi, yi)

⇠newi � ⇠i > ✏
Si

Initialize weights w = 0 and constraints Si = ; 8i
repeat

for all examples yi do
Find most violated constraint

⇠i = maxx2Si�(yi,x) +wT'(x)�wT'(yi)

⇠newi = maxx 6=yi�(yi,x) +wT'(x)�wT'(yi)

if ⇠newi � ⇠i > ✏ then
add constraint to Si

retrain
until no more constraints added

y⇤ = argmaxyw
T'(y)

4



Learning user utility: learning to rank 

match user pairwise preferences

sparsifying 
 term penalty term

minimal distance 

penalty for not 
satisfying constraint

procedure CC('1, T )
w1  0, D  ;
for t = 1, . . . , T do

Receive context xt from the user
yt  argmaxy2Yhwt,'t(xt, y)i
ȳt  QueryImprovement(xt, yt)
D  D [ {(xt, yt, ȳt)}
if NeedCritique(D,'t) then

⇢ LearnCritique(xt, yt, ȳt)
't  't � [⇢]
wt  wt � [0]

wt+1  wt +'t(xt, ȳt)�'t(xt, yt)
't+1  't

�obj(x̂)

�obj
spicy(x̂)

W sub

u(x̂)

W sub = W sub + ⌘rW sub

 
@ u(x)

@ �obj
spicy(x)

!

x=x̂

ŷ = min
y2Y

f(x̂, y)

ŷ0 = min
y2Y

f(x̂0, y) + � `(y, ŷ)

hx̂, ŷi ! hx̂0, ?i

minw,⇠ ||w||1 + �
X

i,j:yi�yj

⇠i,j

subject to:

wT'(yi)�wT'(yj) � 1� ⇠i,j

8i, j : yi � yj

3



Learning algorithm

• Initialise weights 

• While user not satisfied

• run MAX-SMT to find candidate configurations:

• collect feedback as pairwise preferences:

• add constraints and solve learning problem:  

minw,⇠
1

2
||w||2 + �

X
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Si

Initialize weights w = 0 and constraints Si = ; 8i
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for all examples yi do
Find most violated constraint

⇠i = maxx2Si�(yi,x) +wT'(x)�wT'(yi)

⇠newi = maxx 6=yi�(yi,x) +wT'(x)�wT'(yi)

if ⇠newi � ⇠i > ✏ then
add constraint to Si

retrain
until no more constraints added

y⇤ = argmaxyw
T'(y)
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Experimental results

Figure 3: Performance of the CLEO (darker solid line or blue solid line if viewed in colour)
and GSM (lighter dashed line or red dashed line if viewed in colour) algorithms over the
Boolean problems. The y-axis reports the percentage utility loss, while the x -axis contains
the number of pairwise comparisons asked so far. The curves report the median values
observed over 200 runs, while the shaded area denotes the range among the 25th and the
75th percentiles of the observations. Best viewed in colour.

the median.
The search space of the simplest problem with five Boolean attributes

contains just 32 candidate configurations, thus any strategy asking more
than few questions is not competitive with näıve exhaustive search. On
average, seven and nine queries are asked to the DM by CLEO and GSM
for discovering her preferred solution. However, with 12 (or less) queries, the
CLEO and GSM performance are statistically equivalent under a Two-sided
Wilcoxon signed-rank test with a Bonferroni-corrected significance level of
10−3. With more than 12 queries, there is statistical evidence for better
results by CLEO, due to the much more unstable behavior of the GSM
method: after 14 queries CLEO consistently identifies the DM preferred
solution with a null interquartile range (IQR), while the IQR of the GSM
results remains above 16.6%.

The more challenging test cases are represented by the problems with 10
and 15 Boolean attributes, where the search space size is 1024 and 32768,
respectively, preventing the application of exhaustive search techniques. In
both these cases, the performance of CLEO is much better than that of GSM.

In detail, with 10 Boolean attributes, CLEO on average asks 25 pair-
wise comparisons to the DM for identifying her favourite solution, while the
average percentage utility loss of the configuration recommended by GSM
remains above 10% even if 50 queries are asked to the DM. With 16 queries,
the CLEO curve is within 2%, against a value of around 19% observed for
GSM. The performance difference between CLEO and GSM is significant at
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Figure 2: Performance of CLEO while solving the housing problem.

atomic constraints are just the Boolean attributes, and more complex soft
constraints expressing the DM preferences are Boolean terms in plain propo-
sitional logic. That is, each soft constraint is the conjunction of (up to
three) Boolean attributes and the unknown DM utility function is a weighted
Maximum Satisfiability (Max-SAT) instance consisting of the weighted com-
bination of the Boolean terms. The benchmarking algorithm is the GSM
method [3] described in Sec. 6.2.

A benchmark of random utility functions is generated for (number of
Boolean attributes, number of terms) equal to {(5, 3), (10, 6), (15, 9)}. Each
utility function has two constraints with maximum size (three). Constraint
weights are integers selected uniformly at random in the interval [−100, 0)∪
(0, 100].

All the query selection strategies suggested in [3] for the GSM method
have been tested in our experimental setting. For each of the three test cases
{(5, 3), (10, 6), (15, 9)}, we report here the results of the query strategy with
best performance. However, with more than five attributes, the most sophis-
ticated Bayesian query strategies proposed in [3] are too slow, as pointed out
also by the authors themselves and empirically verified in our preliminary
experiments. They have thus been included in the (5, 3) case only. Based
on our results, the best query strategy are the “restricted informed value of
information (VOI)” for the test case (5, 3) and the “simplified VOI” for both
remaining test cases.

Fig. 3 reports the percentage utility loss of the recommended configura-
tion w.r.t. the DM preferred solution for an increasing number of pairwise
comparisons asked so far. The curves report the median values observed over
200 runs for CLEO (darker solid line or blue solid line if viewed in colour)
and GSM (lighter dashed line or red dashed line if viewed in colour). The
shaded areas depict the interquartile range measuring the dispersion around
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Partially Input Convex Neural Nets (PICNN)   

x u1

y z1

u2

z2 . . .
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Figure 2: A partially input convex neural network (PICNN).

In this section we propose an extension to the pure FICNN, the partially input convex neural
network (PICNN), that is convex only over some inputs to the network. Indeed, when we refer to
ICNNs broadly we will typically mean these partially convex functions. As we will show, these net-
works generalize both traditional feedforward networks and FICNNs, and thus provide substantial
representational benefits. We define a PICNN to be a network over (x, y) pairs f(x, y; ✓) where f

is convex in y but not convex in x. Figure 2 illustrates one potential k-layer PICNN architecture
defined by the recurrences

ui+1 = g̃i(W̃iui + b̃i)

zi+1 = gi

⇣
W

(z)
i

⇣
zi � [W (zu)

i ui + b
(z)
i ]+

⌘
+W

(y)
i

⇣
y � (W (yu)

i ui + b
(y)
i )

⌘
+W

(u)
i ui + bi

⌘

f(x, y; ✓) = zk, u0 = x

(8)

where ui 2 Rni and zi 2 Rmi denote the hidden units for the “x-path” and “y-path”, where y 2 Rp,
and where � denotes the Hadamard product, the elementwise product between two vectors. The
crucial element here is that unlike the FICNN, we only need the W (z) terms to be non-negative, and
we can introduce arbitrary products between the ui hidden units and the zi hidden units. Although
more general formulations are possible (e.g., we could involve arbitrary linear functions of the outer
product uizTi , these would result in very large numbers of parameters, and can always be captured
by above architecture by simply adding additional layers that contain more hidden units). The
following proposition highlights the representational power of the PICNN.

Proposition 2. A PICNN network with k layers can represent any FICNN with k layers and any

purely feedforward network with k layers.

Proof. To recover a FICNN we simply set the weights over the entire x path to be zero and set
b
(z) = b

(y) = 1. We can recover a feedforward network by noting that a traditional feedforward
network f̂(x; ✓) where f : X ! Y, can be viewed as a network with an inner product f(x; ✓)T y
in its last layer (see e.g. LeCun et al. [2006] for more details). Thus, a feedforward network can
be represented as a PICNN by setting the x path to be exactly the feedforward component, then

having the y path be all zero except W (yu)
k�1 = I and W

(y)
k�1 = 1T .

Biconvex architectures Although we do not discuss it in detail here, we can also develop an
intermediate model between the PICNN and FICNN that is not convex in (x, y) jointly, but which
is convex in either x or y when the other variables are fixed. Such an architecture would be useful
for e.g., the generative embedding model described above, since it would allow for e�cient inference
over either x or y given the other, but is less restrictive that requiring joint convexity.

6

• Requirements:
• convex and non-decreasing activations functions 
• non-negative weights in z layers 

• Results:
• network is convex in y

procedure CC('1, T )
w1  0, D  ;
for t = 1, . . . , T do

Receive context xt from the user
yt  argmaxy2Yhwt,'t(xt, y)i
ȳt  QueryImprovement(xt, yt)
D  D [ {(xt, yt, ȳt)}
if NeedCritique(D,'t) then

⇢ LearnCritique(xt, yt, ȳt)
't  't � [⇢]
wt  wt � [0]

wt+1  wt +'t(xt, ȳt)�'t(xt, yt)
't+1  't

�obj(x̂)

�obj
spicy(x̂)

W sub

u(x)

W sub = W sub + ⌘rW sub

 
@ u(x)

@ �obj
spicy(x)

!

x=x̂

ŷ = min
y2Y

f(x̂, y)

ŷ0 = min
y2Y

f(x̂, y) + �`(y, ŷ)

3



PICNN for constructive recommendation

• Train PICNN to predict ingredients from nutrients
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Figure 2: A partially input convex neural network (PICNN).

In this section we propose an extension to the pure FICNN, the partially input convex neural
network (PICNN), that is convex only over some inputs to the network. Indeed, when we refer to
ICNNs broadly we will typically mean these partially convex functions. As we will show, these net-
works generalize both traditional feedforward networks and FICNNs, and thus provide substantial
representational benefits. We define a PICNN to be a network over (x, y) pairs f(x, y; ✓) where f

is convex in y but not convex in x. Figure 2 illustrates one potential k-layer PICNN architecture
defined by the recurrences

ui+1 = g̃i(W̃iui + b̃i)

zi+1 = gi

⇣
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(8)

where ui 2 Rni and zi 2 Rmi denote the hidden units for the “x-path” and “y-path”, where y 2 Rp,
and where � denotes the Hadamard product, the elementwise product between two vectors. The
crucial element here is that unlike the FICNN, we only need the W (z) terms to be non-negative, and
we can introduce arbitrary products between the ui hidden units and the zi hidden units. Although
more general formulations are possible (e.g., we could involve arbitrary linear functions of the outer
product uizTi , these would result in very large numbers of parameters, and can always be captured
by above architecture by simply adding additional layers that contain more hidden units). The
following proposition highlights the representational power of the PICNN.

Proposition 2. A PICNN network with k layers can represent any FICNN with k layers and any

purely feedforward network with k layers.

Proof. To recover a FICNN we simply set the weights over the entire x path to be zero and set
b
(z) = b

(y) = 1. We can recover a feedforward network by noting that a traditional feedforward
network f̂(x; ✓) where f : X ! Y, can be viewed as a network with an inner product f(x; ✓)T y
in its last layer (see e.g. LeCun et al. [2006] for more details). Thus, a feedforward network can
be represented as a PICNN by setting the x path to be exactly the feedforward component, then

having the y path be all zero except W (yu)
k�1 = I and W

(y)
k�1 = 1T .

Biconvex architectures Although we do not discuss it in detail here, we can also develop an
intermediate model between the PICNN and FICNN that is not convex in (x, y) jointly, but which
is convex in either x or y when the other variables are fixed. Such an architecture would be useful
for e.g., the generative embedding model described above, since it would allow for e�cient inference
over either x or y given the other, but is less restrictive that requiring joint convexity.

6

nutrients

ingredients



PICNN for constructive recommendation

• Recommend new product by:
• given a nutrients-ingredients pair and desired nutrients

• get minimal ingredient change giving the desired nutrients 
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Figure 2: A partially input convex neural network (PICNN).

In this section we propose an extension to the pure FICNN, the partially input convex neural
network (PICNN), that is convex only over some inputs to the network. Indeed, when we refer to
ICNNs broadly we will typically mean these partially convex functions. As we will show, these net-
works generalize both traditional feedforward networks and FICNNs, and thus provide substantial
representational benefits. We define a PICNN to be a network over (x, y) pairs f(x, y; ✓) where f

is convex in y but not convex in x. Figure 2 illustrates one potential k-layer PICNN architecture
defined by the recurrences
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where ui 2 Rni and zi 2 Rmi denote the hidden units for the “x-path” and “y-path”, where y 2 Rp,
and where � denotes the Hadamard product, the elementwise product between two vectors. The
crucial element here is that unlike the FICNN, we only need the W (z) terms to be non-negative, and
we can introduce arbitrary products between the ui hidden units and the zi hidden units. Although
more general formulations are possible (e.g., we could involve arbitrary linear functions of the outer
product uizTi , these would result in very large numbers of parameters, and can always be captured
by above architecture by simply adding additional layers that contain more hidden units). The
following proposition highlights the representational power of the PICNN.

Proposition 2. A PICNN network with k layers can represent any FICNN with k layers and any
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Proof. To recover a FICNN we simply set the weights over the entire x path to be zero and set
b
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(y) = 1. We can recover a feedforward network by noting that a traditional feedforward
network f̂(x; ✓) where f : X ! Y, can be viewed as a network with an inner product f(x; ✓)T y
in its last layer (see e.g. LeCun et al. [2006] for more details). Thus, a feedforward network can
be represented as a PICNN by setting the x path to be exactly the feedforward component, then

having the y path be all zero except W (yu)
k�1 = I and W

(y)
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Biconvex architectures Although we do not discuss it in detail here, we can also develop an
intermediate model between the PICNN and FICNN that is not convex in (x, y) jointly, but which
is convex in either x or y when the other variables are fixed. Such an architecture would be useful
for e.g., the generative embedding model described above, since it would allow for e�cient inference
over either x or y given the other, but is less restrictive that requiring joint convexity.
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�obj(x̂)

�obj
spicy(x̂)

W sub

u(x)

W sub = W sub + ⌘rW sub

 
@ u(x)

@ �obj
spicy(x)

!

x=x̂

ŷ = min
y2Y

f(x̂, y)

ŷ0 = min
y2Y

f(x̂0, y) + � `(y, ŷ)

hx̂, ŷi ! hx̂0, ?i
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procedure CC('1, T )
w1  0, D  ;
for t = 1, . . . , T do

Receive context xt from the user
yt  argmaxy2Yhwt,'t(xt, y)i
ȳt  QueryImprovement(xt, yt)
D  D [ {(xt, yt, ȳt)}
if NeedCritique(D,'t) then

⇢ LearnCritique(xt, yt, ȳt)
't  't � [⇢]
wt  wt � [0]

wt+1  wt +'t(xt, ȳt)�'t(xt, yt)
't+1  't

�obj(x̂)

�obj
spicy(x̂)

W sub

u(x)

W sub = W sub + ⌘rW sub

 
@ u(x)

@ �obj
spicy(x)

!

x=x̂

ŷ = min
y2Y

f(x̂, y)

ŷ0 = min
y2Y

f(x̂0, y) + � `(y, ŷ)

hx̂, ŷi ! hx̂0, ?i

3


