

AI-Enhanced Computer Vision for Service Robots

Dr. Dimitrios Tzovaras

Director

Information Technologies Institute (ITI)

Centre for Research and Technology Hellas (CERTH)

Athens, August 2019

Robots now and in the future

the robot market according to the IFR¹

Robot density rises Globally

Robots now and in the future

the robot market according to the IFR¹

Estimated worldwide supply of industrial robots

Robots now and in the future

the robot market according to the IFR¹

[1] International Federation of Robotics; https://ifr.org/

The robots market

...and the role of cross cutting technologies

Technologies that advance robot autonomy

are essential for most service robot applications

SPARC Robotics Multi Annual Roadmap (MAR)

The robots market

...and the role of cross cutting technologies

Better <u>Action</u> and <u>Awareness</u> is key to robot autonomy

Perception, Cognition, Navigation and **HRI** are essential abilities to this end

SPARC Robotics Multi Annual Roadmap (MAR)

The robots market

...and the role of cross cutting technologies

Better Action and Awareness is key to robot autonomy

Perception, Cognition, Navigation and HRI are essential abilities to this end

We focus on Al-Enhanced Computer Vision for:

Sensing and interpretation of the environment

Mapping, localization and motion planning

Knowledge representation and reasoning

SPARC Robotics Multi Annual Roadmap (MAR)

AI-Enhanced Computer Vision for Service Robots

Applications

• Personal service robots @home

• Professional service robots @agile manufacturing

• Service robots @field/construction sites

AI-Enhanced Computer Vision for Service Robots

Applications

• Personal service robots @home

Personal service robots @home

overview of the RAMCIP robot

RAMCIP

A Service Robot for MCI Patients at Home

Personal service robots @home

perceiving the home environment

- In terms of perception, an autonomous domestic assistive robot should
 - Know the home environment mapping
 - Be capable to recognize objects and estimate their pose
 - Accurately enough to enable grasping
 - Be capable to monitor human activity and understand behavior
 - Take decisions on when and how to assist

...so as to provide **autonomous**, proactive assistance to the end user

Mapping of indoor environments

Metric and semantic mapping

- Metric mapping
 - Employ Visual Odometry to construct a topological map [1]
 - Motion estimates by visual odometry and general graph optimization (g2o) for loop closure
 - New map node added according to geometric criterion (change in pose)
 - Outcome: Dense map of the explored environment

WP3. Modeling and Monitoring the Home Environment Offline Mapping Functional Components, Mapping Manually Driven Robot Object Detection Identification

^[1] Kostavelis, et al. "Learning spatially semantic representations for cognitive robot navigation." *Robotics and Autonomous Systems* 61.12 (2013): 1460-1475.

Mapping of indoor environments

Metric and <u>semantic</u> mapping

- Hierarchical modelling of the domestic space
 - Small (e.g. cup) and large (e.g. table) objects semantics and relations
 - Hierarchical map allowing updates (i.e. cup last found on this table)
 - Enabling the robot to search for needed object in the house

		Annotated CAD Model	3D Metric Map
ct"> type="CbjmotHamm"/> pe="as:decimal/>> pe="as:decimal/>> pe="as:decimal/>> pe="as:decimal/>> pe="as:decimal/>> pe="as:decimal/>> pe="as:decimal/>> pe="as:decimal/>> pe="as:decimal/>> bases"> decimal/>>	Semantic Hieran <pre> Semantic Hieran </pre> <pre></pre>	Place 2 Place 3 Place 1 Place N	
	<pre>contrastiction have a</pre>		A CONTRACTOR OF THE REAL OF TH

Mapping of indoor environments Metric and semantic mapping

- Hierarchical modelling of the domestic space
 - Small (e.g. cup) and large (e.g. table) **objects semantics and relations**
 - Hierarchical map allowing updates (i.e. cup last found on **this table**)
 - Enabling the robot to search for needed object in the house

Mapping of indoor environments

Metric and semantic mapping

• Hierarchical modelling of the domestic space

Request the "Biscuits" position from the Hierarchical Map

Object recognition and 6DoF pose estimation

- Steps of proposed method [1]
 - 1. Scene Segmentation
 - Planar supporting surface segmentation (Random Sample Consensus RANSAC)
 - 2. Training & Hypotheses Generation
 - 2.5D Patch extraction
 - Feature Learning using **sparse autoencoders**
 - Hough Forests classifier Hough Voting

[1] A. Doumanoglou, R. Kouskouridas, S. Malassiotis and T. K. Kim, 6D Object Detection and Next-Best-View Prediction in the Crowd, IEEE Proceeding of Computer Vision and Pattern Recognition (CVPR), 2016.

Object recognition and 6DoF pose estimation

- Steps of proposed method [1]
 - 1. Scene Segmentation
 - 2. Training & Hypotheses Generation
 - 3. Hypotheses joint optimization refinement
 - Depth and RGB similarity between original scene and objects rendered in the scene
 - Pose correction based on planar model coefficients

[1] A. Doumanoglou, R. Kouskouridas, S. Malassiotis and T. K. Kim, 6D Object Detection and Next-Best-View Prediction in the Crowd, IEEE Proceeding of Computer Vision and Pattern Recognition (CVPR), 2016.

Object recognition and 6DoF pose estimation

Experimental Results (Comparison with State of Art algorithms)

Pose Estimation Accuracy (towards grasping)

(1)	0.45 – 1.92 cm
(2)	0.59 – 2.1 cm
(3)	0.27 – 0.98 cm

Range of surface-tosurface distance between detected and ground truth object

- 1) Berkley Textured Object Recognition Algorithm (textured objects)
- 2) LINEMOD pipeline (non-textured objects)
- 3) 6D Object Detection and Next-Best-View Prediction in the Crowd (textured + non-textured objects)

[1] A. Doumanoglou, R. Kouskouridas, S. Malassiotis and T. K. Kim, 6D Object Detection and Next-Best-View Prediction in the Crowd, IEEE Proceeding of Computer Vision and Pattern Recognition (CVPR), 2016.

early experimentation with mobile robot platform

Object recognition and 6DoF pose estimation coupled with grasping in real homes

Information

Technologies Institute

Large domestic objects recognition

large articulated objects pose estimation

- Rough alignment of object model
 - Based on robot location estimate and known environment map
- Approach based on Articulated ICP (AICP) [1] applied to the model
- Object registration in the robot's perceived scene
 - Robot localization refinement
 - Object position estimate refinement
- Object state identification (closed, open degrees)

First iteration of AICP Cabinet base - aligned

^[1] S. Pellegrini et. al. "A Generalisation of the ICP Algorithm for Articulated Bodies." In *BMVC*, vol. 3, p. 4. 2008.

Large domestic objects recognition

coupled with grasping in real homes

Human activity monitoring

for domestic service robot applications

• Human Tracking

 Human Activity Recognition and Behavior analysis

• Emotion Recognition

approach overview

- Proposed Human Pose Tracking method [1]
 - Full body model –based pose tracking
 - Initialization from SoA single-shot discriminative method [2]
 - Model-based tracking building upon the "Dense Articulated Real Time Tracking" (DART) approach [3]
 - Optimization to minimize sum of distances between
 3D points of the observation and the template
 - Extensions to improve tracking optimization
 - Free space violation
 - Body part visibility
 - Leg intersection
 - Object interaction

[1] M. Vasileiadis, S. Malassiotis, D. Giakoumis, C.S. Bouganis, D. Tzovaras, "Robust Human Pose Tracking For Realistic Service Robot Applications", 5th Int'l Workshop on Assistive Computer Vision and Robotics - **ACVR '17 of IEEE ICCV 2017**.

[2] Shotton, Al., 2013. Real-time human pose recognition in parts from single depth images. Communications of the ACM, 56(1), pp.116-124.

[3] Schmidt, T, etAl, 2014, July. DART: Dense Articulated Real-Time Tracking. In Robotics: Science and Systems (Vol. 2, No. 1).

background of proposed approach

Model Representation

- Each rigid body part *i* forms a geometry defined implicitly by its Signed Distance Function: $SDF^{i}(x, \theta): R^{3} \rightarrow R$
- Global $SDF_{mod}(\mathbf{x}, \boldsymbol{\theta}) : R^3 \to R$ is approximated by the composition of pre-computed local $SDF^i(\mathbf{x}, \boldsymbol{\theta})$

Optimization

- Quasi-Newton optimization: Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
- Can minimize any general real-valued function f(x)
- Approximates the Hessian matrix using simple rank-one updates specified by gradient evaluations

features introduced to improve performance

Free Space Violation

- Parts of the human template not corresponding to input data
- Deformed template projected on 2D-SDF depth image
- Free-space error $SDF_{fs}(\theta)$, defined as sum of values of the corresponding pixels on the 2D-SDF image

$$SDF_{overall}(\boldsymbol{\theta}) = SDF_{model}(\boldsymbol{\theta}) + \lambda SDF_{fs}(\boldsymbol{\theta}), \quad \lambda \leq 1$$

• Faster convergence, fewer iterations

features introduced to improve performance

Body Part Visibility

- Parts of the human template outside of the camera's FoV / occluded
- Template projected on image plane
- Part visibility determined by validity of data around limb midpoint / endpoint
- Non-visible body parts *i* are not taken into consideration during the optimization

$$SDF^{i}(\boldsymbol{x},\boldsymbol{\theta}) = \boldsymbol{0} \quad \boldsymbol{x} \in \Omega_{i}, \qquad \boldsymbol{\Delta q}_{i} = 0$$

• Pre-optimization

features introduced to improve performance

Leg Intersection

- Mix-up of the lower limbs, noisy observations between the legs, quick turn-arounds "trap" optimizer
- Each lower body part is approximated by 7 spheres s ($c_{s'}$ r_s)
- Leg intersection error based on sphere intersection

$$E_{intr}(\boldsymbol{\theta}) = \sum_{(s,t)\in P} \frac{1}{1 + e^{-(r_s + r_t - |\boldsymbol{c}_s(\boldsymbol{\theta}) - \boldsymbol{c}_t(\boldsymbol{\theta})|)\gamma}}$$

Post-optimization. If error over threshold, recalculate for: a) R/L knees interchanged, b)
 R/L ankles interchanged

features introduced to improve performance

- Human interaction with objects is common in realistic settings
 - Can severely affect human tracking accuracy
 - The optimizer tries to match the human template to both the human and non-human data
- Implemented solution: Input preprocessing to remove such objects before optimization
 - Last tracked human silhouette along with a small buffer zone projected on new input
 - Large non-overlapping areas are considered as candidate objects
 - **Floodfill seeds** from center of each candidate area to remove smooth surfaces (doors, tables etc.)

experimental results – public datasets

SMMC-10 Dataset

- Sensor: Mesa SwissRanger time-of-fight sensor
- **1 subject**, 28 sequences, front facing actions
- Actions: Waving, clapping, pointing, boxing, throwing, sitting, leg raising, kicking
- **Ground truth** from Vicon motion capture system
- **14 joints:** head, torso, R/L shoulder, R/L elbow, R/L hand, R/L hip, R/L knee, R/L foot.
- 8K point clouds, each one containing 25K points

[1] Shotton et al. Real-time human pose recognition in parts from single depth images

[2] Ding & Fan. Articulated gaussian kernel correlation for human pose estimation

[3] Ye & Yang. Real-time simultaneous pose and shape estimation for articulated objects

experimental results – public datasets

EVAL Dataset

- Sensor: Kinect v1 RGB-D camera
- **3 subjects**, 24 sequences, front facing actions
- Actions: Waving, clapping, boxing, bending, sitting, kicking, handstand, backflip
- **Ground truth** from Vicon motion capture system
- **12 joints:** head, neck, R/L shoulder, R/L elbow, R/L hand, R/L knee, R/L foot.
- 9K point clouds, each one containing 78K points

[1] Ganapathi, et al. Real Time Human Pose Tracking from Range Data

[2] Schmidt et al. Dart: dense articulated real-time tracking with consumer depth cameras

[3] Ye & Yang. Real-time simultaneous pose and shape estimation for articulated objects

experimental results – public datasets

PDT Dataset

- Sensor: Kinect v1 RGB-D camera
- **5 subjects**, 20 sequences, front facing actions
- Actions: Waving, boxing, bending, kicking, jumping, sitting on floor, moving around
- **Ground truth** from Phasespace motion capture system
- **15 joints:** head, neck, R/L shoulder, R/L elbow, R/L hand, Torso, R/L Hip, R/L knee, R/L foot
- 27K depth images, 640x480px

[1] Baak et al. A data-driven approach for real-time full body pose reconstruction

[2] Helten et al. Personalization and evaluation of a real-time depth-based full body tracker

[3] Ye & Yang. Real-time simultaneous pose and shape estimation for articulated objects

experimental results - realistic dataset

Custom Dataset Generation

- Realistic human motion dataset for service robot AAL applications
- Kinect v1 depth camera, on-board of a service robot
- ~90s sequences, 11 subjects
- Actions of typical activities of daily living relevant to AAL
 - walking, eating, drinking, opening cupboard, taking pill, etc.
- Manual annotation of 9 skeleton joints

available online: http://ramcip-project.eu/ramcip-data-mng

experimental results - realistic dataset

 [1] M. Vasileiadis, S. Malassiotis, D. Giakoumis, C.S. Bouganis, D. Tzovaras, "Robust Human Pose Tracking For Realistic Service Robot Applications", 5th Int'l Workshop on Assistive Computer Vision and Robotics - ACVR '17 of IEEE ICCV 2017.
 [2] Shotton et al. *Real-time human pose recognition in parts from single depth images*

Human tracking by RGBD and lasers fusion

enabling social-aware robot navigation

Overview of proposed method [1]

- Modality 1: Skeleton joints tracker RGBD sensor
 - Robot tracks user while in RGBD sensor's FoV
- **Modality 2:** Leg-based human detector through LIDAR sensors of increased FoV
 - User position tracked even out of RGBD FoV
- **Fusion** b/w Modality 1 and Modality 2
- Social-aware adaptation of robot path planner...

[1] Kostavelis, I., Kargakos, A., Giakoumis, D. and Tzovaras, D., 2017, July. Robot's Workspace Enhancement with Dynamic Human Presence for Socially-Aware Navigation. In International Conference on Computer Vision Systems (ICVS 2017), pp. 279-288. Springer, Cham. Best Conference Paper Award

Human tracking by RGBD and lasers fusion

enabling social-aware robot navigation

- The social aware robot navigation method **models**:
 - Human presence with a sequence of Gaussian Kernels parameterized to the proxemics theory
 - The human's **short term motion intention** based on geometric criterions
 - o Considering the current human pose with respect to the candidate human standing positions (frequently visited ones)
- It calculates in real-time:
 - The robot global path using a variation of D* Lite algorithm
 - The required robot re-planned path on run-time to avoid unintentional collisions and crossings with the human paths

Robot path planning: *Left*, without considering human presence *Right*, by considering human presence

Robot path planning: *Left*, without robot-human path intersection *Right*, with robot-human path intersection

[1] Kostavelis, I., Kargakos, A., Giakoumis, D. and Tzovaras, D., 2017, July. Robot's Workspace Enhancement with Dynamic Human Presence for Socially-Aware Navigation. In International Conference on Computer Vision Systems (ICVS 2017), pp. 279-288. Springer, Cham. Best Conference Paper Award

Human tracking by RGBD and lasers fusion short term human motion intention prediction and adaptive robot path planning

[1] Kostavelis, I., Kargakos, A., Giakoumis, D. and Tzovaras, D., 2017, July. Robot's Workspace Enhancement with Dynamic Human Presence for Socially-Aware Navigation. In International Conference on Computer Vision Systems (ICVS 2017), pp. 279-288. Springer, Cham. **Best Conference Paper Award**

Emotion recognition

based on computer vision and biosignals

Facial expressions recognition

- Face detection, facial landmark detection, face alignment and cropping
- Local Gabor Binary patterns extraction
 - Local Gabor Binary Pattern Histograms (LGBPH)
 - 18 Gabor channels (3 octaves, 6 orientations)
 - Three facial feature extractors
 - Operating on input image subsets (upper, lower, global)
- Dimensionality reduction (PCA)
- SVM classifier for each Action Unit (AU)
- Trained on the extended Cohn Kanade database

Emotion recognition

based on computer vision and biosignals

Affect-related body activity analysis

- Depth-based upper-body activity tracking
 - Extraction of low-level postural features, high-level features and temporal dynamics
 - E.g. hands distance, body activity movement/power, body spatial expansion, symmetry, bending and statistical cues (mean, SD)
 - Stress-oriented behavioural body activity features
 - Activity level, sharp activities energy, activity symmetry, position and movement of head, body barycenters, specific gestures [1]
- Biosignals processing
 - E.g. Empatica E4 wristwatch, wirelessly connected to robot
 - Extraction of features from Inter-Beat-Interval (IBI) and Galvanic Skin Response (GSR) signals [2]

^[1] Giakoumis, D., Drosou, A., Cipresso, P., Tzovaras, D., Hassapis, G., Gaggioli, A. and Riva, G., 2012. Using activity-related behavioural features towards more effective automatic stress detection. **PloS one**, 7(9), p.e43571.

^[2] Giakoumis, D., Tzovaras, D., Moustakas, K. and Hassapis, G., 2011. Automatic recognition of boredom in video games using novel biosignal moment-based features. **IEEE Transactions on Affective Computing**, *2*(3), pp.119-133.

Vision-based human activity recognition approach overview (1/2)

- Aim: Detection of actions included in ADLs relevant to AAL
 - Based on human tracking through the robot's RGBD sensor
- Overview of proposed approach [2]:
 - Building upon the Eigenjoints-based method [1]

- Extracts information about the **relative positions of the joints between frames** in video sequences
- Introducing extensions towards robust action recognition in realistic domestic service robot applications

^[1] X. Yang and Y. Tian. 2014. Effective 3d action recognition using eigenjoints. Journal of Visual Communication and Image Representation, 25(1), 2-11. (2014).

^[2] Stavropoulos, G., Giakoumis, D., Moustakas, K. and Tzovaras, D., 2017, June. Automatic action recognition for assistive robots to support mci patients at home. In Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments, **PETRA 2017**, (pp. 366-371). ACM.

Vision-based human activity recognition approach overview (2/2)

Proposed extensions to eigenJoints-based action recognition:

- Motion trend added as extra feature
 - By considering also the "next frame" in the video sequence, we add f_{cn} feature, analogous to f_{cp} , but extracted from the next frame
- Accumulated travelled distance of each joint over the video sequence added as extra feature
- Use only of the corresponding joints instead of all joints pairs in the f_{ci}, f_{cp} (and f_{cn} when used) features
 - Feature size and noise reduction of noise induced by action irrelevant joints (e.g. leg joints in a seated action)
- Detection of **objects manipulated** by the user
 - Information added to the action recognition method

^[2] Stavropoulos, G., Giakoumis, D., Moustakas, K. and Tzovaras, D., 2017, June. Automatic action recognition for assistive robots to support mci patients at home. In Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments, **PETRA 2017**, (pp. 366-371). ACM.

Vision-based human activity recognition

experimental results – public dataset

MSR Action Dataset

- Confusion matrices, cross-subject experiment, Action Set 2:

- Our method improved performance, especially between actions with similar content
 - e.g: in DX, DT and DC; all draw actions: Draw "X", tick and cross respectively

Vision-based human activity recognition

experimental results – realistic dataset

- Confusion Matrices on our custom, realistic daily activities dataset
- The proposed method **significantly improved action recognition performance**:
 - A9, A10 & A11: that are all "Open Cupboard" at different heights
 - A12, A13 & A14: "Eat", "Alter" & "Drink" actions, where the manipulated object helps to distinguish between actions with very similar content

Original EigenJoints method

Human behavior analysis

IU and DBN-based behavior monitoring on top of CV

- Aim: Analysis of human behavior towards proactive assistive robot decisions
- Development of novel user behavior analysis method [1], based on Dynamic Bayesian Networks (DBNs)
- Adoption of the Interaction Unit (IU) Analysis
 - Decomposition of complex activities into simple actions.
 - Systematic notation on how simple actions are associated with behavioral factors
 - Correlation of atomic actions with manipulated objects
- Application on common activities of daily living
 - Meal preparation cooking, medication intake and eating activities

[1] Kostavelis, I., Vasileiadis, M., Skartados, E., Kargakos, A., Giakoumis, D., Bouganis, C. S., & Tzovaras, D. (2019). Understanding of human behavior with a robotic agent through daily activity analysis. International Journal of Social Robotics, 1-26.

Human behavior analysis

IU and DBN-based behavior monitoring on top of CV

- Modeling of the IU analysis with a Dynamic Bayesian Network for:
 - Activity recognition
 - Interpretation of the IU steps to extract insights about the way an activity is performed
- Modelling of normal and abnormal behavior
 - Statistics and post processing on the resulting Viterbi path of DBN network
 - Understanding of user's normal and abnormal behaviors
 - $\hfill\square$ to be used for robot decision making...

[1] Kostavelis, I., Vasileiadis, M., Skartados, E., Kargakos, A., Giakoumis, D., Bouganis, C. S., & Tzovaras, D. (2019). Understanding of human behavior with a robotic agent through daily activity analysis. International Journal of Social Robotics, 1-26.

Object recognition, human tracking and activity monitoring

Integrated in the RAMCIP user behavior monitoring approach

IU and DBN-based behavior analysis

experimental evaluation

- Dataset collected at a simulated apartment
 - 18 subjects performed 4 activities, ~120 repetitions
 - 98% classification accuracy on activity recognition

Above 85% classification accuracy on IU analysis

Meal preparation									
IU 1	IU 2	IU 3*	IU 4*	Ov	erall				
100%	89.74%	64.10%	79.41%	83.31%					
Cooking									
IU 1	IU 2*	IU 3*	IU 4*	Ov	erall				
85%	100%	85%	80%	87.50%					
Having a meal									
IU 1	IU 2	IU 3*	IU 4*	IU 5	Overall				
93.75%	93.75%	100%	96.87%	93.75%	95.62%				
Medication intake									
IU 1*	IU 2*	IU 3*	IU 4	Ov	erall				
75%	81.25%	96.87%	75%	82	.03%				

*mandatory IU step

[1] Kostavelis, I., Vasileiadis, M., Skartados, E., Kargakos, A., Giakoumis, D., Bouganis, C. S., & Tzovaras, D. (2019). Understanding of human behavior with a robotic agent through daily activity analysis. International Journal of Social Robotics, 1-26.

IU and DBN-based behavior analysis

experimental evaluation

- Dataset collected in real homes
 - 12 subjects performed 4 activities, for a whole week at their own homes, >300 repetitions
 - Approx. 92% classification accuracy on activity recognition

- Approx. 85% classification accuracy on IU analysis

IU 1	IU 2	1	IU 3 ^a		J 4 ^a	Overall
Meal prep	paration					
94.29%	87.14	% 8	34.29%	87	.14%	88.21%
IU 1	IU 2 ^a	I	U 3 ^a	IU 4 ^a		Overall
Cooking 88.57%	91.43	76 8	34.29%	87	.14%	87.86%
IU 1	IU 2	IU 3 ^a	IU 4 ^a		IU 5	Overall
Having a	meal					
90.48%	88.10%	91.67%	72.62.87	7%	82.14%	85.00%
IU 1 ^a	IU 2 ^a	I	U 3 ^a	IU	J 4	Overall
Medicatio	on intake					
96 0007	02 22	72 4	26.000%	93	220%	

[1] Kostavelis, I., Vasileiadis, M., Skartados, E., Kargakos, A., Giakoumis, D., Bouganis, C. S., & Tzovaras, D. (2019). Understanding of human behavior with a robotic agent through daily activity analysis. International Journal of Social Robotics, 1-26.

VUM-based knowledge representation

- Virtual User Model (VUM) –based representation of key end user aspects
 - VUM, semantic map and real-time user behavior observations drive robot decisions for personalized context-aware operation

VUM-based knowledge representation

RAMCIP VUM main parts summary (1/2)

Anthropometric

¢	Ant	hrop	oom	etric	Com	ponentType 🛛 🕿		
	• E	<>	ove	rall_	body	1	OverallBodyType 😤	
	sequ		R	1	<>	height	xs:decimal	
	ence		Ove	sequ	<>	sitting_height	xs:decimal	
			al	ē		weight	xs:decimal	
		<>	tors	50			TorsoType 😞	
			R	1	<>	deltoid_width	xs:decimal	
			Ę,	S	<>	waist_circumference	xs:decimal	
		<>	arm	ıs			ArmsType 🙁	
			e ş	•	<>	upper_arm_length	xs:decimal	1
			Arm	sequ	<>	upper_arm_circumfere	ence xs:decimal	
			sType	lence	<>	lower_arm_length	xs:decimal	
			rp .		<>	lower_arm_circumfere	nce xs:decimal	
		<>	leg	s			LegsType 😞	
			R	۳	<>	upper_leg_length	xs:decimal	
			Legs	sequ	<>	upper_leg_circumfere	nce xs:decimal	
			Type	ence	<>	lower_leg_length	xs:decimal	
					<>	lower_leg_circumferer	nce xs:decimal	
						foot_length	xs:decimal	
		<>	use	r_fac	e_sig	gnature	FaceSignatureType 😞	
			Ľ	۳		user_name	xs:string	
			E.	S	<>	signature_filename	xsistring	
		<>	acq	uain	tanc	es_face_signatures [0*	'] FaceSignatureType ≈	
			¢;	•	<>	user_name	xs:string	
			E.	S	<>	signature_filename	xs:string	
	_	_	_	_	_			

Physical and Cognitive Skills

RamcipSkillsType 🛸						
1	<>	cor	npre	hens	ion_problems	ComprehensionProblemsType 🛸
sequ		e ş	°Ë	<>	written_sentence	s xs:decimal
ence		ſ	S		hearing_speech	xs:decimal
	Visual_problems					VisualProblemsType
		e ş	۳	<>	color	xs:decimal
		Visu	sequ		acuity	xs:decimal
		a	Ie	<>	field	xs:decimal
	<>	mo	tor_p	orob	lems	MotorProblemsType
		e ş	۳ŧ	<>	arm_precision	xs:decimal
		≤	S	♦	hand_precision	xs:decimal
	<>	cor	overs	atior	n_assesment	xs:decimal
	<>	me	moŋ	/_an	d_attention	xs:decimal

Communication Preferences

łş	Ran	ncip	Commur	nicationType		
	Ħ	0	speech	recognition	SpeechRecognitionType 🙁	
	sequence		😤 🎵 S	enabledrecognition_three	xs:boolean xs:decimal	
		0	gesture	recognition	GestureRecognitionType 😞	
			*	enabled	xs:boolean	٦
			eque	ves_gesture_enal	bled xs:boolean	
			nce reRec	no_gesture_enable	pled xs:boolean	
			ogni	Cancel_gesture_e	abled xs:boolean	
		0	speech	_synthesis	SpeechSynthesisType 🛸	
			2	enabled	xs:boolean	
			Spec	default_talking_r	rate xs:decimal	
			echSy	default_pitch	xs:decimal	
			1	default_volume	xs:decimal	
		\diamond	touch_r	nodality	TouchModalityType 😤	
			4 1	preferred_theme	TouchModalityThemeEnum	
			sequ	auto_change_the	eme xs:boolean	
			ence	auto_change_size	ing xs:boolean	
			fality.	use_notification_	sounds xs:boolean	
				default_component	ent_sizing TouchModalitySizeEnum	
		0	augmer	nted_reality_interface	AugmentedRealityInterfaceType 😤	
			<u>~</u>	enabled	xs:boolean	
		0	emerge	ncy_contact_list	EmergencyContactListType 😤	_
			*	skype_user_name	e [1.*] xs:string	
		\diamond	user_co	ntact_list	UserContactListType 😤	
			% 🖪	♦ user_contact [1.4]	*] UserContactType	*
			Sequ	😤 🧃 🍫 skyr	pe_user_name x	sistring
			Conta	User V pict	ture_file_name ×	sistring
			dt	C C A ord	er xs:d	lecimal
	_	_				

VUM-based knowledge representation

RAMCIP VUM main parts summary (2/2)

£;	Beh	navio	oural	Com	pon	entT	ype	-	*						
	•		act	ivity_	stat	s [0.	.*]					ActivityOver	allType 😞		
	sequ		4 3	• 8		id						i	act:ActivityEnu	m	
	lence		Acti	sequ	<	rep	oetitio	ons					xs:decim	al	
			vityo	Jence		act	ivity_	stati	stics	;		Activi	ityStatisticsTyp	e ≈	
			vera	10		4	-	<>	rec	all				xs:decin	nal
			IIType			Acti	seq	$\langle \rangle$	rec	ognition				xs:decin	nal
			n			vityS	uenc	$\langle \rangle$	act	ion				xs:decin	nal
						tatist	ſÐ	$\langle \rangle$	sta	rt_time [D*]		Star	tTimeTy	pe 😞
						icsTy			e z	18 🔷	time				xs:decimal
						pe			S	ñ 📣	weekday	,		log:Wee	kDayEnum
								0	dur	ration				xs:decin	nal
						abr	norm	alıty_	stat	tistics	Act	livityAbnormal	ityStatistics ly)e 😤	L
						23 N	5	<>	mis	sing_ma	ndatory_iu	IS [0*]	IUAbnor	nalityTy	pe 🌣
						Activi	eque		€	1 «>	IU_id				xs:decimal
						tyAb	nce		-	₽ ≪>	value				xs:decimal
						norm			dev	/iation_d	uration_iu	[0*]	IUAbnon	malityTy	pe 😞
						alitys			e z	°E <>	IU_id				xs:decimal
						statis			F	š 📣	value				xs:decimal
						tics		0	dur	ration id	e			xs:decin	nal
						-					- 				
					l °	ab	norm	ality	_thr	esholds	Activ	vityAbnormalit	y i nresnoid i y	be ≈	_
						43	U HE	<>	IU_	duration_	_threshold	[U*]		xs:decin	nai

•

User Behavior

14	•	<>	id	act:ActivityEnum		
Acti	seq	$\langle \rangle$	executed_on_time_rate	xs:decimal		
vityS	uenci	\diamond	executed_not_on_time_rate	xs:decimal		
<u>}</u>	ru	♦	not_executed_rate	xs:decimal		
me	dicat	ion_	schedule [0.,*]	MedicationIntakeType 🛸		
e	•	\diamond	name	log:MedicationEnum		
Meo	sequ	\diamond	weekday	log:WeekDayEnum		
ic.	Je		time	xs:decimal		
medication_schedule_stats [0*] MedicationScheduleStatisticsType						
me	-12	\diamond	name	log:MedicationEnum		
me 😪	G		executed_on_time_rate	xs:decimal		
Mec	e sequ	\$				
me 💞 Medicati	🖷 sequenci	$\langle \rangle$	executed_not_on_time_rate	xs:decimai		

2

high-level assistive robot decision making

- Aim:
 - To provide a Decision Making strategy suitable to determine when and how the robot should intervene to assist the user
- To achieve this, the robot should:
 - be constantly aware about the user and the environment
 - act as a prompting system that associates the robot's awareness about the user with specific types of robotic actions
 - compensate the partial sensor input acquired during the monitoring and modeling of the daily human activities through vision
- Our approach relies on Partially Observable Markov Decision Processes (**POMDP**)¹
 - POMDPs handle the partial observability of the environment
 - POMPDs are prompting systems based on the rule that:

The agent receives observations from the environment and decides on its actions

POMDPs in robot decision making

- *POMDP basic principles:*
 - **State space**: Determines the *condition of the environment*
 - Actions space: Comprises the set of actions that the agent is able to perform so as to interact with the environment
 - **Observations space**: Encloses the agent's *perception input* from the environment
 - Rewards: The restrictions space imposed by *penalizing or endorsing specific agent* action given the environment state
- POMDP-based approach for a proactive domestic service robot (e.g. RAMCIP) :
 - States correspond to the robot alert levels about the human and the environment
 - Actions comprise the set of robotic actions that the robot is able to perform so as to interact with the human and the environment
 - The robot intervention actions are associated with the robot's levels of alert about the human and the environment

User-centric Robot Cognition POMDP design principle in RAMCIP

- Our POMDP-based decision making approach takes into account:
 - The state space based on robot levels of alert about the human and the environment
 - High levels of alert require engagement with actual robot task e.g. fetching tasks
 - Medium levels of alert require engagement with communication tasks e.g. dialogue
 - Low levels of alert require *monitoring of the human* e.g. tracking and activity recognition
 - The action space; actions triggered based on the current state of the robot and context
 - Robot task planning (navigation, manipulation, grasping, ...)
 - Robot communication (dialogue, User Interphase, Augmented Reality display, ...)
 - Robot monitoring (vision based human & environment tracking, activity recognition, ...)
- A POMDP model is produced based on the principle:
 - <u>Observations</u> tend to increase the levels of robot alert
 - <u>Actions</u> tend to decrease the levels of robot alert
- A policy graph is computed:
 - Outlines a sequence of robotic actions for the denouement of the assistive scenario

User-centric Robot Cognition POMDP design principle in RAMCIP

- POMDP model generation (Novel in RAMCIP)
 - FSM diagrams have been created as <u>maps</u> that constrain the POMDP models for the RAMCIP use cases
 - Transition probabilities among <u>directly connected states are</u> modeled with <u>increased values</u> normalized to the total number of states in the FSMs
 - **Observation probabilities** among <u>linked robotic actions</u> are also explicitly declared with <u>increased values</u> and the rest observation probabilities receive uniform values
 - Rewards:
 - Increased **positive** values assigned for the transition **from high to low states**
 - Negative values are assigned for the transition from low to high states
- **Partial observability trick** (from FSM to POMDP):
 - The produced policy graph resolves the assisting scenarios irrespectively the state that will be initiated
 - Additive value: the system tends to transit in states of low level of robot alerts
 - The FSM is the ideal scenario; the current design can resolve the use cases by simultaneously considering the probability of appearance of **all the observations**

POMDP design principle in RAMCIP

• Exemplified RAMCIP Scenario

Assistance upon detection of abnormalities related to electric appliances during cooking

- FSM state diagram:
- **Blue:** Task actions A_T
- Magenta: Communication actions A_c
- Green: Monitoring actions A_M

User-centric Robot Cognition POMDP design principle in RAMCIP

• Exemplified RAMCIP Scenario

POMDP design

Conceptual grouping of states

Clustering of robotic actions

- Table on the right:
 - Mapping from FSM diagram to POMDP
 - Level of robot alerts (States)
 - Group of robotic actions (Actions)

Levels	of Robo	t Alert	Actions				
High	Medium	Low	Task	Communication	Monitoring		
State-3	State-2	State-1	RTP1 : Robot navigates to the parking position suitable to mon- itor the state of appliance	Dialog1 : Robot communicates with human about some miss- ing objects and asks if it should fetch them	Object- Detection: The SW com- ponent suitable to detect and recognize small objects		
State-6	State-5	State-4	RTP2 : Robot navigates to the parking position suitable to mon- itor the cooking activity	Dialog2: Robot communicates with human about forgetting to turn off an appliance and asks if it should close it	Large object detection: The SW component suitable to recog- nize the state of large articulated objects		
State-8	State-12	State-7	RTP3: Robot plans the actions for navigation and manipula- tion of appliance	Dialog3 : Robot informs the hu- man that it will go manipulate the appliance	Registry : The SW component suitable to regis- ter the incidents		
State-15	State-14	State-9	RTP4: The robot fetches the missing objects	Dialer : The robot failed to turn off the appliance and notifies for external help	Parking Posi- tion: The SW component suit- able to switch the robot in monitoring state where the human and environment are observed		
_	-	State-10	-	—	<u> </u>		
_	-	State-13	-	-	—		
_	-	State-16	-	_	—		

POMDP-based decision making in RAMCIP

POMDP-based decision making in RAMCIP

AI-Enhanced Computer Vision for Service Robots

Applications

Professional service robots

@agile manufacturing

Professional service robots

@agile manufacturing

Robot perception in learning by demonstration tasks

• Key challenge:

Hand-object detection and tracking in 3D

...through commercial RGB-D sensors

hand-object detection and tracking in 3D

- Input: RGBD data from common commercial sensor
- **Object Detection** (6DoF pose) is performed based on sparse autoencoders for feature extraction and Hough Forests for classification
- 3D CAD models are employed for both training the object detector and performing hand-object tracking
 - 6 DoF for the models of the assembly parts
 - 42 DoF for the hand models
- **Coarse hand detection** of an open configuration is performed

hand-object detection and tracking in 3D

- Hand-Object Tracking implementation using Particle Swarm Optimization (PSO)
 - Detection results are used for initializing the tracker
 - Building upon existing approaches on hand tracking in order to perform joint hand – object tracking
 - Addressing deformable objects, as well
 - Optimization Time: 0.6 sec per frame

Learning by demonstration key-frames extraction

grasp pick-up align contact

Key-frame information

stored in

General information:

Scenario id and current step

Object(s) id involved in the demonstration phase Relative timestamp

Kinematics & Motion information:

Object pose coordinates (position & orientation, 6 DOF)

Hand pose (42 DOF)

Semantic information:

User defined corresponding to assembly states, e.g. *grasp, align*

Automatic system suggestions, e.g. aligned axes

Dynamics information:

Forces derived from the kinesthetic learning Grasping contact points Object deformation characteristics

Key-frames:

Important states of the demonstrated assembly Folding Assembly Example

SARAFun

XML format

```
<?xml version="1.0" encoding="UTF-8" standalone="true"?>
<KeyFrame xsi:schemaLocation="http://www.SARAFunXML.com
SARAFun_KeyFrame_XmlSpec_v02.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns="http://www.SARAFunXML.com" t="25.4" idx="1" id="0">

    <CurrentAction id="assembly.mpg">

       <Description>Putting one object over the other</Description>
      <InvolvedObjects>
          <Object id="Obj1"/>
          <Object id="Obj2"/>
       </InvolvedObjects>

    <VisualFeedback>

         <CameraSensor id="RealSenseF200">
              <FrameRange fileList="RealSenseF200_Sequence.xml" idxLast="210" idxFirst="30"/>
          </CameraSensor>
         - <CameraSensor id="Xtion">
             <FrameRange fileList="Xtion_Sequence.xml" idxLast="220" idxFirst="40"/>
          </CameraSensor>
       </VisualFeedback>
   </CurrentAction>
   <Objects>
      <Object id="ObjA" name="Mobile Phone PCB">
          <MeshFile>mobile_phone_pcb.obj</MeshFile>
         <PoseState:
              <Position z="-0.36945" y="-0.0175897" x="-0.125605"/>
              <YPR rotz="-1.73068" roty="-0.679461" rotx="0.0018003"/>
          </PoseState>
          <Deformation>NotYetDefined</Deformation>
       </Object>
     - <Object id="ObjB" name="Mobile Phone Case">
          <MeshFile>mobile_phone_case.obj</MeshFile>
          <PoseState>
              <Position z="-0.317434" y="-0.0832089" x="-0.0241354"/>
              <YPR rotz="-0.0524788" roty="0.0192357" rotx="-0.723375"/>
          </PoseState>
          <Deformation>NotYetDefined</Deformation>
       </Object>
   </Objects>
   <Instructor>

    <Hand id="LeftHand" name="Instructors left Hand">
```

12th of April 2018

key-frames extraction

- Key-frames: Important states of the demonstrated assembly
 - Finite State Machines (FSMs) or Behavioral Trees (BTs) employ the extracted Keyframes and their information to automatically generate the robot's assembly program
 Proposed Key-frame extraction approach [1]
 - Employing hand-object tracking in 3D for kinematic information extraction and automatic Key-frame identification based on semantic graphs from image sequences
 - Extending past approaches focusing on 2D RGB images [2]
 - Detecting Key-frames as structural changes of the semantic graph
 - Post processing (and instructor's feedback) for identifying the assembly state (e.g. grasp, contact, etc.) corresponding to each Key-frame for construction of the assembly FSM or BT

 ^[1] Grigorios S. Piperagkas, Ioannis Mariolis, Dimosthenis Ioannidis, Dimitrios Tzovaras: Key-frame Extraction With Semantic Graphs in Assembly Processes.
 IEEE Robotics and Automation Letters 2(3): 1264-1271 (2017)

^[2] Aksoy et al. Learning the semantics of object-action relations by observation." Int. Journal of Robotics Research 2011,

automatic key-frame identification

Proposed method: Semantic Graphs¹

- Hand and objects segmentation
 - Using output from tracking module
- Scanning of each labeled input image horizontally and vertically, to count the relations between objects and/or hands
 - The sequence is analyzed semantically, by labeling the graph edges as "absent -11", "not touching-0", "touching-2" and "overlapping-1"
- Construction of semantic graph
 - compressed graph of derivatives of actions/states which define the core of the sequence

^[1] Grigorios S. Piperagkas, Ioannis Mariolis, Dimosthenis Ioannidis, Dimitrios Tzovaras:Key-frame Extraction With Semantic Graphs in Assembly Processes. IEEE Robotics and Automation Letters 2(3): 1264-1271 (2017)

automatic key-frame identification

New features using 3D information from tracker

Novel modeling approach in 3D, based on ellipsoids

• 3D Ellipsoids are automatically **fitted to the objects' CAD models**, at initialization stage

- Solution of **Minimum Volume Covering Ellipsoid** problem, by exploiting a *Dual Reduced Newton* convex optimization algorithm, yields a precise ellipsoid for each object
- Processing of manipulation actions is now processing of relations between ellipsoids in 3D
 - using 3D pose and position of objects/hand estimated from hand-object tracking algorithm
 - 2D rendered images are also employed
- Analytical computation of free margin between ellipsoids: ability to track touching or overlapping in 3D

automatic key-frame identification

Semantic Graph definitions using the new 3D features¹

- 5 node labels
 - 0: Background
 - 1: Right Hand
 - 2: Assembly Part1
 - 3: Assembly Part2
 - 4: Left Hand
- 11 edge labels indicating
 - No relation
 - Touching
 - Overlapping
 - Alignment
 - Combinations of the above

Edge labels	Relations between nodes n _i and n _j
0	i,j nodes present – No relation between them
1	i overlapping j
2	i touching j
3	Ellipsoid's i major axis is parallel to ellipsoid's j selected axis
4	Ellipsoid's i medium axis is parallel to ellipsoid's j selected axis
5	Ellipsoid's i minor axis is parallel to ellipsoid's j selected axis
6	All ellipsoid's i axes are parallel to selected ellipsoid's j axes
7	Ellipsoids i and j are touching and have one axis parallel
8	Ellipsoids i and j are touching and have all axes parallel
9	Ellipsoid i is overlapping j and they have one axis parallel
10	Ellipsoid i is overlapping j and they have all axes parallel
11	i or i is absent from the current frame

[1] Grigorios S. Piperagkas, Ioannis Mariolis, Dimosthenis Ioannidis, Dimitrios Tzovaras: Key-frame Extraction With Semantic Graphs in Assembly Processes. IEEE Robotics and Automation Letters 2(3): 1264-1271 (2017)

automatic key-frame identification

Demonstrated Scene Frame

automatic key-frame identification

using only 2D information

method extended to 3D using ellipsoids

Extracted semantic graphs

Extracted semantic graphs

August 2019

automatic key-frame identification

Parallel axes configurations can be detected in the 3D case

using only 2D information

method extended to 3D using ellipsoids

Extracted semantic graphs

Extracted semantic graphs

August 2019

automatic key-frame identification

Parallel axes configurations can be detected in the 3D case

using only 2D information

Extracted semantic graphs

Extracted semantic graphs

August 2019

automatic key-frame identification

Erroneous touching or overlap detections can be avoided in the 3D case

using only 2D information

method extended to 3D using ellipsoids

Extracted semantic graphs

Extracted semantic graphs

August 2019

automatic key-frame identification

Erroneous touching or overlap detections can be avoided in the 3D case using only 2D information method

method extended to 3D using ellipsoids

Extracted semantic graphs

Extracted semantic graphs

August 2019

automatic key-frame identification

Automatically extracted key-frames in 3D based on changes of graphs

No touching

Obj1 – Obj2 3 axes parallel

Hand - Obj1 touching

Obj1 – Obj2 overlap

Obj1 – Obj2 1 axis parallel

Hand not touching

August 2019

automatic key-frame identification

Key-frame Extraction Evaluation

- 14 assembly demonstration experiments
 - 14 Key-frame sets automatically extracted
 - 14 Key-frame sets manually extracted
- Average number of extracted Keyframes
 - Automatic: 9.6
 - Manually: 7.3
- Average ratio r_{Kf} between automatically vs manually extracted Key-frames: 1.3
 - 2 additional Key-frames extracted by the system (object's orientation)
- Mean distance between manually and automatically selected key-frames
 - with respect to their position within each recorded sequence
 - Average distance of only **5.3** frames in a **183** frame sequence
- The system extracts almost the same amount of key-frame as the teacher
- The extracted frames are very close to those manually selected by the teacher

No.	Total Frames	Extracted key-frames			Moon	Mean
		Auto	Manual	r_{Kf}	Distance (std)	Distance/Total Frames %
1	184	10	8	1.2	6.1 (10.0)	3.3
2	214	11	7	1.6	3.0 (4.8)	1.4
3	131	10	7	1.4	5.4 (7.3)	4.1
4	153	6	7	0.9	3.2 (3.9)	2.1
5	218	10	7	1.4	11.4 (19.0)	5.2
6	164	5	8	0.6	0.6 (1.2)	0.4
7	159	8	7	1.1	5.3 (11.0)	3.3
8	206	11	7	1.6	8.0 (12.8)	3.9
9	212	15	7	2.1	3.3 (6.3)	1.6
10	168	9	8	1.1	4.6 (8.6)	2.8
11	189	11	7	1.6	8.7 (13.8)	4.6
12	168	7	7	1	4.1 (7.9)	2.5
13	188	11	7	1.6	7.3 (11.2)	3.9
14	212	10	8	1.2	2.1 (4.3)	1.0
Total avg.	183	9.6	7.3	1.3	5.3 (10.3)	2.9

AI-Enhanced Computer Vision for Service Robots

Applications

Service robots @field/construction sites

Field service robots

@field/construction sites

- Autonomous subsurface mapping can be essential for many applications:
 - Landmine detection
 - Structured utilities detection
 - Buried infrastructures detection

- Current situation:
 - Semi-automatic procedure
 - Manual data collection
 - Data interpretation from experts
 - Semi-automatic annotation of the subsurface profile

Field service robots

@field/construction sites

Proposed approach [1]

- **3D underground mapping** with a mobile robot and a GPR antenna array
- Joint surface/subsurface mapping method overview

- Surface
 - SLAM and constraints-based outdoor path planning, robot navigation
 - Graph-based stereo visual odometry
 - General graph optimization (g2o) for loop closure and localization refinements
- Sub-surface
 - GPR data collection, signal pre-processing and **B-Scans formulation**
 - Underground utility detection through B-Scans processing
 - Underground map creation, coupled with surface map

[1] G. Kouros, I. Kostavelis, E. Skartados, D. Giakoumis, A. Simi, G. Manacorda, D. Tzovaras, "3D Underground Mapping with a Mobile Robot and a GPR Antenna", **2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018)**, Madrid, Spain, Oct 2018

Vision-based Robot Navigation For outdoor/field robotics

Step #1

- Navigation of a mobile robotic platform in outdoor environment
- Aim: Autonomous robot path planning and navigation

Core Technologies utilized

- Autonomous exploration of outdoor environment through
 - SLAM and constraints-based outdoor path planning
 - Stereo camera -based visual odometry for robot localization
 - Model Predictive Control (MPC) –based robot navigation

(d)

joint surface/subsurface mapping

- Along the rover motion, data are collected from the GPR antenna
- Collected A-Scans are registered to the localization graph
- B-Scan formulation corresponds to straight routes and is constrained by the robot's path

underground utilities detection

Hyperbola patterns detection on B-Scans

- Two-step segmentation
- Isolation for salient regions
- Multidimensional HoG features
- SVM classification for hyperbola detection

3D reconstruction of underground environment

- Each A-Scan is registered to a node of the localization graph
- The depth of the detected apex is calculated using the propagation velocity *v* in the medium
- Apexes also inherit the transformation from the respective graph node
- The output is a sparse point cloud from the subsurface utilities

underground utilities mapping

Identification of structured shapes in the subsurface

- Further processing on the point cloud stemming from the hyperbola apexes detection
- Outliers removal and density-based spatial clustering
- Registration with primitive geometrical shapes to isolate pipes, manholes etc.

underground utilities mapping

(a) Robot trajectories; annotated pipes

shown in red

(c) Outliers removal & clustering

(b) Detected hyperbolas

underground utilities mapping

BADGER Project: http://badger-robotics.eu/

[1] G. Kouros, I. Kostavelis, E. Skartados, D. Giakoumis, A. Simi, G. Manacorda, D. Tzovaras, "3D Underground Mapping with a Mobile Robot and a GPR Antenna", **2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018)**, Madrid, Spain, Oct 2018

Conclusions

AI-Enhanced Computer Vision for Service Robots

- Future service robots are expected to provide assistance in a wide spectrum of diverse domains
 - at home, acting as personal, assistive service robots
 - in agile manufacturing, exploration, construction applications, and much more
- Technologies that advance **robot autonomy**, endorsing robots with better action and awareness are necessary
 - Robot perception, cognition, navigation and human-robot interaction capabilities play a key role in service robots
 - AI-enhanced computer vision techniques are key elements in this scope

Conclusions

AI-Enhanced Computer Vision for Service Robots

- Key challenges for future service robots operating in real homes, agile manufacturing, field/construction applications
 - Environment mapping
 - Object recognition
 - Human tracking and activity recognition
 - Human-object interactions tracking for learning by demonstration
 - Affective human-robot communication
 - Autonomous navigation, localization and mapping
 - Robust, context-aware decision making
- Al-enhanced computer vision can help towards

Methods robust enough for applications in real environments

Computer Vision and Signal Processing Techniques for Advanced Robotic Applications

Dr. Dimitrios Tzovaras

Dimitrios.Tzovaras@iti.gr