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Robot density rises Globally

units per 10,000 employees
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Robots now and in the future
the robot market according to the IFR?
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[1] International Federation of Robotics; https://ifr.org/
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Estimated worldwide supply of industrial robots
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Service robots for personal/domestic use
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Technologies that advance robot autonomy
are essential for most service robot applications

End User Market Domains
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Domestic Appliances Mining and Minerals
Assistive Living Utilities and Service
Entertainment Construction and Demolition
Education Inspection and Monitoring
Marketing

Civil Infrastructure
Environment
Search and Rescue
Law Enforcement
Emergency Services
Science Support

People Transport
Goods Transport
Warehousing

SPARC Robotics Multi Annual Roadmap (MAR)
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Better Action and Awareness is key to robot autonomy

Perception, Cognition, Navigation and HRI are essential abilities to this

end
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Better Action and Awareness is key to robot autonomy
Perception, Cognition, Navigation and HRI are essential abilities to this end

We focus on
Al-Enhanced Computer
Vision for:

Human Robot Interaction
Salety
Human Machine Human Robot
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Sensing and interpretation
of the environment

"Better Interaction”
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Applications

e Personal service robots @home

e Professional service robots @agile manufacturing

e Service robots @field/construction sites

August 2019 8
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RAMCIP

A Service Robot for MCI Patients at Home

August 2019
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e Interms of perception, an autonomous
domestic assistive robot should

— Know the home environment - mapping
— Be capable to recognize objects and
estimate their pose

e Accurately enough to enable grasping

— Be capable to monitor human activity
and understand behavior

— Take decisions on when and how to assist

...S0 as to provide autonomous,
proactive assistance to the end user

August 2019

11
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e Metric mapping

— Employ Visual Odometry to construct
a topological map [1]

e Motion estimates by visual odometry
and general graph optimization (g20)

for loop closure

e New map node added according to NG Nebbing

geometric criterion (change in pose) Manually Driven Robiet

e Outcome: Dense map of the explored

environment

[1] Kostavelis, et al. "Learning spatially semantic representations for cognitive robot navigation." Robotics and Autonomous Systems 61.12 12
(2013): 1460-1475.
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e Hierarchical modelling of the domestic
Space
— Small (e.g. cup) and large (e.g. table) objects semantics and relations
— Hierarchical map allowing updates (i.e. cup last found on this table)

— Enabling the robot to search for needed object in the house

3D Metric Map Annotated CAD Model /—\

b SemanticHierarchy |

Argelnject

t
PEEREES
BEREBE!

Place N

13
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Mapping of indoor environments
Metric and semantic mapping

e Hierarchical modelling of the domestic

space

— Small (e.g. cup) and large (e.g. table) objects semantics and relations
— Hierarchical map allowing updates (i.e. cup last found on this table)

— Enabling the robot to search for needed object in the house

Room

R —

Large Objects

Small Objects

Cup Red

Cup Blue

Cup Stripes

Tea Box

Parking Positions

Parking
Position 1

Parking
Position 2

<2xml version="1.0" encoding="UTF-8" standalone="no" 2>

<pl:apartment

Emlns:pl="http: tempuri.org/config/scene">

<pl:room>
<pl:id»0</pl:id>
<pl:name>kitchen</pl:nams>

[—] <pl:points>

E

=

El

<pl:xcoord>100</pl:xcoord>
<pl:ycoord>150</pl:ycoord>
</pl:points>

<pl:points>
<pl:xcoord>200</pl:xcoord>
<pl:ycoord>250</pl:ycoord>
- </pl:points>
| <pl:largeArticulated>

<pl:id>600</pl:id>
<pl:type>Fridge</pl:type>
<pl:xcoord>125</pl:xcoord>
<pl:ycoord>225</pl:ycoord>
<pl:zcoord>1</pl:zcoord>
<pl:roll>125</pl:rolls>
<pl:pitch>235</pl:pitch>
<pl:yaw>1l</pl:yaws>

<pl:graspingPoints>1</pl:graspingPoints>
=] <pl:small>

<pli:id>1000</pl:id>

<pl:type>medication</pl:type>

<pl:xcoord>125</pl:xcoord>
<pl:ycoord>225</pl:ycoords>
<pl:zcoord>1l</pl:zcoord>
<pl:roll>125</pl:roll>
<pl:pitch>225</pl:pitch>
<plivaw>1l</pl:vaw>

=] <pl:properties:
<pl:color>white</pl:color>

r </pl:properties>

<pl:relationWithLarge>2</plirelacionWichlLargs>

<pl:parent>600</pl:parent>

<pl:graspingPoints>1</pl:graspingPoints>
<pl:defaultPosition>600</pl:defaulcPosition>

- </pl:5mallﬂ

=] <pl:parkingpos:
<plixcoord=>2.29</pl:xcoord>
<pl:ycoord>-2.55</pl:ycoord>

<pl:zcoord>0</pl:zcoord>
<pl:roll>0</pl:roll>
<pl:pitch>0</pl:pitch>
<pl:yaw>0.435</pl:yaw>

= </pliparkingpos>

+ </pl:largeArticulated>

] </pl:room>

“</pl:apartment>

14



m Mapping of indoor environments

Information

Technologies Metric and semantic mapping

Institute

e Hierarchical modelling of the domestic space

Request the "Biscuits" position from the Hierarchical Map

15
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e Steps of proposed method [1]

1. Scene Segmentation

e Planar supporting surface segmentation (Random Sample Consensus - RANSAC)
2. Training & Hypotheses Generation

e 2.5D Patch extraction

e Feature Learning using sparse autoencoders

e Hough Forests classifier — Hough Voting

annotation

[ yaw, pitch, roll, x, y, z ]

Encoder Decoder
Optional
Layers
Feature
® vector
e e
© ©
©
[ |
DEFTR VxVx4 1500 1000 1000 1500 VxVx4

[1] A. Doumanoglou, R. Kouskouridas, S. Malassiotis and T. K. Kim, 6D Object Detection and Next-Best-View Prediction in the Crowd, IEEE 17
Proceeding of Computer Vision and Pattern Recognition (CVPR), 2016.
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e Steps of proposed method [1]

3. Hypotheses joint optimization - refinement

e Depth and RGB similarity between original scene and objects rendered in the

scene

e Pose correction based on planar model coefficients

annotation

—_—

[ yaw, pitch, roll, x, y, z ]

Encoder Decoder
Optional
Layers
Feature
® vector
e e
© ©
©
[ |
DEFTR VxVx4 1500 1000 1000 1500 VxVx4

[1] A. Doumanoglou, R. Kouskouridas, S. Malassiotis and T. K. Kim, 6D Object Detection and Next-Best-View Prediction in the Crowd, IEEE

Proceeding of Computer Vision and Pattern Recognition (CVPR), 2016. 18
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Experimental Results (Comparison with State of Art algorithms)

Object recognition
100.00% 100%
80.00% 80%
60.00% oot
l
40.00% m(2) 20% (1)
20.00% (3) 0% - (3)
0.00% " -
A - T - TR R, S
-&z’_ ) f’a\ \\.\\' (‘j‘" ’\’\‘;(\q
SR g o
K ° &° <
o) ot o

Pose Estimation Accuracy (towards grasping)

0.45-1.92cm Range of surface-to-
(2) 0.59 — 2.1 cm surface distance between
detected and ground
(3) 0.27-0.98 cm truth ObjeCt

1) Berkley Textured Object Recognition Algorithm (textured objects)
2) LINEMOD pipeline (non-textured objects)
3) 6D Object Detection and Next-Best-View Prediction in the Crowd (textured + non-textured objects)

[1] A. Doumanoglou, R. Kouskouridas, S. Malassiotis and T. K. Kim, 6D Object Detection and Next-Best-View Prediction in the Crowd, IEEE Proceeding of
Computer Vision and Pattern Recognition (CVPR), 2016.
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e Rough alignment of object model
. . First iteration of AICP
— Based on robot location estimate and Cabinet base - aligned

known environment map

e Approach based on Articulated ICP
(AICP) [1] applied to the model

Cabinet doors -
e Object registration in the robot’s aligned

perceived scene

— Robot localization refinement
— Object position estimate refinement

e Object state identification (closed,

open - degrees)

[1] S. Pellegrini et. al. "A Generalisation of the ICP Algorithm for Articulated Bodies." In
BMVC, vol. 3, p. 4. 2008.
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e Human Tracking

e Human Activity Recognition and
Behavior analysis

e Emotion Recognition

August 2019 24
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e Proposed Human Pose Tracking method [1]

— Full body model —based pose tracking /‘\
* Initialization from SoA single-shot [l * — »3533>
discriminative method [2] ... 3

e Model-based tracking building upon the
“Dense Articulated Real Time Tracking”
(DART) approach [3]

— Optimization to minimize sum of distances between
3D points of the observation and the template

e Extensions to improve tracking optimization

— Free space violation

| Overlay

Overlay Pt
1 . 0

88.92%

— Body part visibility ’
— Leg intersection

— Object interaction Fail

[1] M. Vasileiadis, S. Malassiotis, D. Giakoumis, C.S. Bouganis, D. Tzovaras, "Robust Human Pose Tracking For Realistic Service Robot Applications", 5th Int’l
Workshop on Assistive Computer Vision and Robotics - ACVR ‘17 of IEEE ICCV 2017.

[2] Shotton, Al.., 2013. Real-time human pose recognition in parts from single depth images. Communications of the ACM, 56(1), pp.116-124.

[3] Schmidt, T, etAl, 2014, July. DART: Dense Articulated Real-Time Tracking. In Robotics: Science and Systems (Vol. 2, No. 1).
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Model Representation

* Eachrigid body part i forms a geometry defined implicitly by its
Signed Distance Function: SDF'(x,0): R3® - R

* Global SDF,,,4(x,0) : R® - R is approximated by the
composition of pre-computed local SDF'(x, 8)

Optimization
* Quasi-Newton optimization: Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm
« Can minimize any general real-valued function f(x)

* Approximates the Hessian matrix using simple rank-one updates specified by gradient
evaluations

August 2019 26
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Free Space Violation

. Parts of the human template not corresponding to input
data

. Deformed template projected on 2D-SDF depth image

. Free-space error SDFfS(H), defined as sum of values of
the corresponding pixels on the 2D-SDF image

SDFoverall(e) - SDFmodel(B) + ASDFfS(B), A < 1

»  Faster convergence, fewer iterations

August 2019 27
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Body Part Visibility

Parts of the human template outside of the camera’s FoV
/ occluded

Template projected on image plane

Part visibility determined by validity of data around limb
midpoint / endpoint

Non-visible body parts i are not taken into consideration
during the optimization

SDF'(x,0) =0 x€Q Ag; =0

Pre-optimization

August 2019

Human tracking
features introduced to improve performance

28
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Leg Intersection

Mix-up of the lower limbs, noisy observations between
the legs, quick turn-arounds “trap” optimizer

Each lower body part is approximated by 7 spheres s ( c,,

5)

r

Leg intersection error based on sphere intersection

1
Eintr(e) — Z 1 + e—(TS+T't—|CS(9)_Ct(9)|)y
(s,t)EP

Post-optimization. If error over threshold, recalculate for: a) R/L knees interchanged, b)
R/L ankles interchanged

August 2019 29
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 Human interaction with objects is common in realistic
settings

e Can severely affect human tracking accuracy

e The optimizer tries to match the human template to
both the human and non-human data

* Implemented solution: Input preprocessing to remove such
objects before optimization

- Last tracked human silhouette along with a small buffer
zone projected on new input

- are considered as candidate
objects

- Floodfill seeds from center of each candidate area to
remove smooth surfaces (doors, tables etc.)

August 2019
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SMMC-10 Dataset

[1] Shotton et al. Real-time human pose recognition in parts from single depth images

0,98 -
0,97

a 0,96

<L

€0,95
0'94 .
0,93

Sensor: Mesa SwissRanger time-of-fight sensor

1 subject, 28 sequences, front facing actions

Actions: Waving, clapping, pointing, boxing, throwing, sitting, leg raising, kicking
Ground truth from Vicon motion capture system

14 joints: head, torso, R/L shoulder, R/L elbow, R/L hand, R/L hip, R/L knee, R/L foot.
8K point clouds, each one containing 25K points

SMMC-10

[1] 2 Proposed
method

[2] Ding & Fan. Articulated gaussian kernel correlation for human pose estimation
[3] Ye & Yang. Real-time simultaneous pose and shape estimation for articulated objects
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EVAL Dataset

. Sensor: Kinect vl RGB-D camera

. 3 subjects, 24 sequences, front facing actions
. Actions: Waving, clapping, boxing, bending, sitting, kicking, handstand, backflip
. Ground truth from Vicon motion capture system

. 12 joints: head, neck, R/L shoulder, R/L elbow, R/L hand, R/L knee, R/L foot.

. 9K point clouds, each one containing 78K points

0,95

0,92 EVAL
a 0,89
<L
£0,86

0’83 -

0,80

[1] Proposed
method

[1] Ganapathi, et al. Real Time Human Pose Tracking from Range Data
[2] Schmidt et al. Dart: dense articulated real-time tracking with consumer depth cameras
[3] Ye & Yang. Real-time simultaneous pose and shape estimation for articulated objects
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PDT Dataset

0,08
0,07

w 0,06 0,064

< 0,05

0,04 0,046 0,043
0,03

Sensor: Kinect vl RGB-D camera

5 subjects, 20 sequences, front facing actions
Actions: Waving, boxing, bending, kicking, jumping, sitting on floor, moving around
Ground truth from Phasespace motion capture system

15 joints: head, neck, R/L shoulder, R/L elbow, R/L hand, Torso, R/L Hip, R/L knee, R/L foot
27K depth images, 640x480px

PDT

0,071

[1] [2] [3] Proposed

method

[1] Baak et al. A data-driven approach for real-time full body pose reconstruction
[2] Helten et al. Personalization and evaluation of a real-time depth-based full body tracker
[3] Ye & Yang. Real-time simultaneous pose and shape estimation for articulated objects
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Custom Dataset Generation
* Realistic human motion dataset for service robot AAL applications
* Kinect vl depth camera, on-board of a service robot
 ~90s sequences, 11 subjects
e Actions of typical activities of daily living relevant to AAL
* walking, eating, drinking, opening cupboard, taking pill, etc.

* Manual annotation of 9 skeleton joints

NE

available online: http://ramcip-project.eu/ramcip-data-mng
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Shotton etAl [2]

Institute
= method [1]
a 0,80 -
0,60 - I I I —
0,40 N I I 1 1 1 I I I I 1

.
1,00
Head Left Right Left Right Left Right Left Right Mean
Elbow Elbow Hand Hand Knee Knee Foot Foot

Proposed

mA

[1] M. Vasileiadis, S. Malassiotis, D. Giakoumis, C.S. Bouganis, D. Tzovaras, "Robust Human Pose Tracking For Realistic Service Robot Applications", 5th
Int’l Workshop on Assistive Computer Vision and Robotics - ACVR ‘17 of IEEE ICCV 2017.
[2] Shotton et al. Real-time human pose recognition in parts from single depth images
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Overview of proposed method [1]

* Modality 1: Skeleton joints tracker - RGBD sensor
* Robot tracks user while in RGBD sensor’s FoV

* Modality 2: Leg-based human detector through LIDAR
sensors of increased FoV

* User position tracked even out of RGBD FoV

* Fusion b/w Modality 1 and
Modality 2

e Social-aware adaptation
of robot path planner...

s |

[1] Kostavelis, 1., Kargakos, A., Giakoumis, D. and Tzovaras, D., 2017, July. Robot’s Workspace Enhancement with Dynamic
Human Presence for Socially-Aware Navigation. In International Conference on Computer Vision Systems (ICVS 2017),
pp. 279-288. Springer, Cham. Best Conference Paper Award
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* The social aware robot navigation method models:
— Human presence with a sequence of Gaussian Kernels parameterized to the proxemics theory

— The human’s short term motion intention based on geometric criterions

o Considering the current human pose with respect to the candidate human standing positions
(frequently visited ones)

* [t calculates in real-time:
— The robot global path using a variation of D* Lite algorithm

— The required robot re-planned path on run-time to avoid unintentional collisions and crossings
with the human paths

Robot path planning: Left, without considering human presence Robot path planning: Left, without robot-human path intersection
Right, by considering human presence Right, with robot-human path intersection

[1] Kostavelis, 1., Kargakos, A., Giakoumis, D. and Tzovaras, D., 2017, July. Robot’s Workspace Enhancement with Dynamic
Human Presence for Socially-Aware Navigation. In International Conference on Computer Vision Systems (ICVS 2017),
pp. 279-288. Springer, Cham. Best Conference Paper Award
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Institute Erediction and adaptive robot path planning

ght-Click:: Move Z. Shift: More options.

[1] Kostavelis, 1., Kargakos, A., Giakoumis, D. and Tzovaras, D., 2017, July. Robot’s Workspace Enhancement with Dynamic
Human Presence for Socially-Aware Navigation. In International Conference on Computer Vision Systems (ICVS 2017),
pp. 279-288. Springer, Cham. Best Conference Paper Award
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Facial expressions recognition
. Face detection, facial landmark detection, face alignment and cropping
. Local Gabor Binary patterns extraction
. Local Gabor Binary Pattern Histograms (LGBPH)
. 18 Gabor channels (3 octaves, 6 orientations)
. Three facial feature extractors

. Operating on input image
subsets (upper, lower, global)

. Dimensionality reduction (PCA)

SVM classifier for each Action Unit (AU)

. Trained on the extended Cohn Kanade database

August 2019 46
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Affect-related body activity analysis
. Depth-based upper-body activity tracking
. Extraction of low-level postural features, high-level features and temporal dynamics

. E.g. hands distance, body activity movement/power, body spatial expansion,
symmetry, bending and statistical cues (mean, SD)

. Stress-oriented behavioural body activity features

. Activity level, sharp activities energy, activity symmetry, position and movement of
head, body barycenters, specific gestures [1]

. Biosignals processing
. E.g. Empatica E4 wristwatch, wirelessly connected to robot

. Extraction of features from Inter-Beat-Interval (IBI) and
Galvanic Skin Response (GSR) signals [2]

[1] Giakoumis, D., Drosou, A., Cipresso, P., Tzovaras, D., Hassapis, G., Gaggioli, A. and Riva, G., 2012. Using activity-related behavioural features towards more

effective automatic stress detection. PloS one, 7(9), p.e43571.
[2] Giakoumis, D., Tzovaras, D., Moustakas, K. and Hassapis, G., 2011. Automatic recognition of boredom in video games using novel biosignal moment-based

features. IEEE Transactions on Affective Computing, 2(3), pp.119-133.
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e Aim: Detection of actions included in ADLs relevant to AAL
— Based on human tracking through the robot’s RGBD sensor

e QOverview of proposed approach [2]:

— Building upon the Eigenjoints-based
method [1]

e Extracts information about the
relative positions of the joints between frames
in video sequences

— Introducing extensions towards robust action recognition in realistic
domestic service robot applications

[1] X. Yang and Y. Tian. 2014. Effective 3d action recognition using eigenjoints. Journal of Visual Communication and Image
Representation, 25(1), 2-11. (2014).

[2] Stavropoulos, G., Giakoumis, D., Moustakas, K. and Tzovaras, D., 2017, June. Automatic action recognition for assistive robots to
support mci patients at home. In Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive
Environments, PETRA 2017, (pp. 366-371). ACM.
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Proposed extensions to eigenloints-based action recognition:
e Motion trend added as extra feature

— By considering also the “next frame” in the video sequence, we add f_, feature,

analogous to f_, but extracted from the next frame

e Accumulated travelled distance of each joint over the video sequence
added as extra feature

e Use only of the corresponding joints instead of all joints pairs in the f
(and f_, when used) features

— Feature size and noise reduction of noise induced by action irrelevant joints (e.g. leg
joints in a seated action)

feo

ci’

e Detection of objects manipulated by the user
— Information added to the action recognition method

[2] Stavropoulos, G., Giakoumis, D., Moustakas, K. and Tzovaras, D., 2017, June. Automatic action recognition for assistive robots to
support mci patients at home. In Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive
Environments, PETRA 2017, (pp. 366-371). ACM.
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MSR Action Dataset

Confusion matrices, cross-subject experiment, Action Set 2:

SA

FK
Hi
ol
DT
D

HC

s ¢ & &5 g & ¥ =B : ¢ & &5 &8 & & B
Original EigenJoints method Proposed method

Our method improved performance, especially between actions with similar content
- e.g:in DX, DT and DC; all draw actions: Draw “X”, tick and cross respectively



G

Information

Technologies

Institute

Vision-based human activity recognition

experimental results — realistic dataset

- Confusion Matrices on our custom, realistic daily activities dataset

- The proposed method significantly improved action recognition performance:
- A9, A10 & A11: that are all “Open Cupboard” at different heights

- Al12, A13 & Al14: “Eat”, “Alter” & “Drink” actions, where the manipulated object
helps to distinguish between actions with very similar content

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

Original EigenJoints method

Al
A2
A3
A4
A5
Ab
A7
A8
AS
Al10
All
Al12
Al3
Al4
Al5
Al6
Al7
Al8
Al9
A20

Proposed method, with all

extensions, incl. manipulated object
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Aim: Analysis of human behavior towards proactive assistive robot decisions

Development of novel user behavior analysis method [1], based on Dynamic
Bayesian Networks (DBNs)

Adoption of the Interaction Unit (IU) Analysis
- Decomposition of complex activities into simple actions.
- Systematic notation on how simple actions are associated with behavioral factors

- Correlation of atomic actions with manipulated objects

Application on common activities of daily living

RGB-D

- Meal preparation cooking, U . S Foint Cioud
medication intake and
eating activities

HAVING A MEAL

"Of~
N8 COSTMAR

[1] Kostavelis, |., Vasileiadis, M., Skartados, E., Kargakos, A., Giakoumis, D., Bouganis, C. S., & Tzovaras, D. (2019). Understanding of
human behavior with a robotic agent through daily activity analysis. International Journal of Social Robotics, 1-26.
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Human behavior analysis
IU and DBN-based behavior monitoring on top of CV

 Modeling of the IU analysis with a Dynamic Bayesian Network for:
— Activity recognition

— Interpretation of the IU steps to extract insights about the way an activity is performed

 Modelling of normal and abnormal behavior

— Statistics and post processing on the resulting Viterbi path of DBN network

— Understanding of user’s normal and abnormal behaviors
U to be used for robot decision making...

1 - 1U Of activity A
2 — U Of activity A

0 —IU Of activity A:
h1
L Ns - IU Of activity Ai /—\ Time slice t

(h1)
Hidden Variables

M Inter - connection edge
B Intra - connection edge

Timeslicet+1 w

(hy)

Observed Variables

0-DO NOTHING
1-REACH
01 2-OPEN 02
Na - CLOSE

1-CUpP

~

- PILLBOX

3 - REMOTE

Nob-1 - POT

Not

SPOON

- Human Manipulated Environment Behavioral Factor .
‘ . H Action Object State Recognition / JAction Albrommsll Reapen [Pirteriay
Forgets where the objects
. - . . locking in the
11 box closed The pill box is on the are, g
1 Reach pill box p D:;Cblzhe on e Pl |)1]1T|~l o the different area. Picks up M
‘ o different than desired
object. Easily distracted
2 Alter pill box pill box in hand, ['he pill box is closed Opens the box and does NM
opened not remember the reason
3 Hand to cup cup with water Take the pill Gets easily distracted M
mouth on table
4 Alter pill box pill box closed I'he pill box is opened Gets easily distracted M
. . Place the pill box Gets easily distracted,
5 Reach pill box pill box on table ace the pii box on et_b Fasiy distracte NM
table misplaces the objects
Forgets where the objects
are, looking in a different
rith wat . a Takes the object
6 Reach cup cup with water I'he cup is on the table area “akes the objects M
on table and later does not use
them. Pick up different
than the desired object
Hand t rith wat . . .
7 and o cup cup With water Drink water from the cup Gets easily distracted M
mouth on table
; P -
8 Reach cup cup empty on Place the cup on the Gets easily distracted NM
table table

[1] Kostavelis, |., Vasileiadis, M., Skartados, E., Kargakos, A., Giakoumis, D., Bouganis, C. S., & Tzovaras, D. (2019). Understanding of
human behavior with a robotic agent through daily activity analysis. International Journal of Social Robotics, 1-26.
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Information monitoring

Iﬁ::;:jt’g'es Integrated in the RAMCIP user behavior monitoring approach

@ WORKSPACE

No Image

@ DETECTION

——— No Image
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* Dataset collected at a simulated apartment
— 18 subjects performed 4 activities, ~120 repetitions

W Recognition rate @ Precision @ Accuracy

100% |

— 98% classification accuracy

on activity recognition o
i Meal Preparation ' Cooking Having a meal Medication intake Overall
— o) 11 1 1 Meal preparation

Above 85% classification accuracy on IU analysis I

100%, 89.74% 64.10% 79.41% 83.31%

Cooking
IU 1 IU 2* U 3* U 4* Overall
85% 100% 85% 80% 87.50%

Having a meal
U 1 U 2 IU 3* IU 4* IU 5 Overall
93.75%  93.75% 100%, 96.87% 93.75% 95.62%

Medication intake
IU 1* [IU 2* 1IU 3* 1U 4 Overall
75% 81.25% 96.8T% 75% 82.03%

*mandatory [U step

[1] Kostavelis, 1., Vasileiadis, M., Skartados, E., Kargakos, A., Giakoumis, D., Bouganis, C. S., & Tzovaras, D. (2019). Understanding of
human behavior with a robotic agent through daily activity analysis. International Journal of Social Robotics, 1-26.
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e Dataset collected in real homes
— 12 subjects performed 4 activities, for a whole week at their own homes, >300 repetitions

— Approx. 92% classification ..
accuracy on activity N
recognition |
. . . U1 IU2 U3 IU 42 Overall
— Approx. 85% classification accuracy on U analysis e —
94.29% 87.14% 84.20% 87.14% 88.21%
U1 u2* U 3* U 42 Overall
Cooking
88.57% 91.43% 84.29% 87.14% 87.86%
U1 IU2 IU 3 U 4# IUS Overall

Having a meal

90.48% 88.10% 91.67% 72.62.87% 82.14% 85.00%
U 1* U2 U 32 U4 Overall
Medication intake

86.90% 83.33% 86.90% 83.33% 85.12%

*Mandatory 1U step

[1] Kostavelis, 1., Vasileiadis, M., Skartados, E., Kargakos, A., Giakoumis, D., Bouganis, C. S., & Tzovaras, D. (2019). Understanding of
human behavior with a robotic agent through daily activity analysis. International Journal of Social Robotics, 1-26.
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* Virtual User Model (VUM) —based representation of key end user aspects

* VUM, semantic map and real-time user behavior observations drive robot decisions
for personalized context-aware operation

€3 RAMCIP VUM RamcipVumType %=

“2 | “fu| €% user_information UserlnformationType =
:j (%4}
m = v ey
- o & "= €% userid wsidecima
2|a C |9 _
2|3 | = &P user name csistring
l'_-- 1]
3
= €% anthropometric ant:AnthropometricComponentType %
]
m 2 — = = — =
€2 physical_and_cognitive skiRamcipSkillsType
£2 behavioural beh:BehaviouralComponentType
€% communication_preferences commiRamcipCommunicationType ¥
£2 affective aff:AffectivebodelType ¥
€% cognitive_training_stats ct:SerialStats_ MARKETType =
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RAMCIP VUM main parts summary (1/2)

Anthropometric Physical and Cognitive Skills Communication Preferences

42 AnthropometricComponentType 2 42 RamcipSkillsType A “% RamcipCommunicationType

- = - onType &
B | € overall body s = | <> comprehension_problems 4l €» speech recognition - o
N - wn N 2 42 "H| 4% enabled s:boolean
an G| M| € height 3 2| "[5 €% written_sentences 2 .
[ iy & | w ﬁ 4% recognition_threshold s:decimal
n 5 ol -
3 F? B | 3 sitting_height a €% hearing_speech B - )
= R {» gesture_recognition pe &
o | €3 weight ima €% visual_prablems % " <> enabied R
£» torso TorsoType & % | €» color 5' B | {3 yes_gesture_enabled sboolezn
& B | acui 3 [$] s:boolean
3 . . 1 no_gesture_enabled s:boolear
42 "FE €% deltoid_width a § 2 o ;"w = -
= | L . ol £ field g 4% cancel_gesture_enabled
i €2 waist_circumference a =]

4% help_gesture_enabled
€% motor_problems

€F arms 4% speech_synthesis

@ "l €» arm_precision

: =1 _

%2 "lg €% upper_arm_length - B B @ "H| €% enabled

r | . & € hand_precision 28 e )

3 |2 €2 upper_arm_circumference f{J a default_talking_rate

5 & - LR .

\: E €3 lower_arm_length 2 €% conversation_assesment - 4% default_pitch

1 .
® €9 |lower arm circumference _ €% memory_and_attention E {» default_volume
{¥ touch_modality TouchModalityType &

€¥ legs .

2 4 "H|| 4% preferred_theme Touchioda =
4| "E| <> upper_leg_length 5 2 | 4% auto_change_theme s:boolean
— | =w [~
2 B € upper_leg_circumference i E 1% auto_change sizing sboolean
ey = [=] [

_::' 2 € lower_leg_length E 4% use_notification_sounds s:boclean
| m =

1% default_component_sizing TouchMedality

€2 lower_leg_circumference
{» augmented_reality_interface Aug

€2 foot_length

%z "H| €% enabled

€% user_face_signature

4 "FE €% user_name

- | .

1% emergency_contact_list Emerg

#¢ “H| €% skype user_name [1-7] s:string

€% signature_filename

€2 user_contact_|ist ]
€ acquaintances_face_signatures [0."] 42| "W | €% user_contact 1.7 ctType &
- IR

2 ¢ "H €% skype_user_name

4| "l | €% user_name

)

| _ £ S8 ey
€% signature_filename 3 £ |8 % picture file_name
As
& P ¥ arder sdecimal
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RAMCIP VUM main parts summary (2/2)

@ BehaviouralCemponentType = User BEhaViOI'

T €% activity_stats [0.7] ActivityOverallType 4
w N
3 %2 | "l)| €» id um
3 Ela gy it mdecima
A a0 la repetitions ¥sidecima
= i Ty - - [P LR PR FRT g i
= | 2 | €F activity_statistics ActivityStatisticsType =
QR
rﬁ A
& &2 "l €% recall
= > | @ - i .
= A | B  €F recognition wsdecima n
= = |k N
‘ff\ é €F action ws:decima
&
& €3 start_time [0.7] StariTimeType &
il A
I,—I' 2| “F €» time €% activity_schedule_stats [0.7] ActivityScheduleStatisticsType &
k] o | o - . R
i £ weekday m % "Bl <> id actActivityEnum
| @ ) )
. . A2 £ executed_on_time_rate wsdedima
€% duration xs:decima Z E -
= | 2 | €2 executed_not_on_time_rate wsdedima
- - O — . o m
€3 abnormality_statistics T . e €» not_executed_rate xsidecima
&2 £ missing_mandatory_ius [0.] UAbnomalityType = . . o N
g .E 8- - B § €% medication_schedule [0.%] ViedicationintakeType &
| w 5
= o [# 5 =
g e S Bl < wid 42 "l €% name leg:MedicationEnum
| = | w
ey ] [ = | w . o
|2 €P value =B £ weekday ogiWeskDayEnum
o e
] s i sidecima
% €% deviation_duration_jiu [0.7] UAbnomalityType = €% time xsidecima
1)
F @z | 8| €2 w_id wsidecima €% medication_schedule_stats [0.*] Medicat 7
Th
= €F value wsidecima | "I €% name og:MedicationEnum
&
& = | = ) )
@ o . & 2 €F executed_on_time_rate xs:decima
: €% duration_idle xs:decima g |g
o | 2 £€» executed_not_on_time_rate wsdedima
- T g | m
€% abnormality_thresholds Acivitybnam 2 €F not_executed_rate xsdecima

42 " €% ju_duration_threshald [0.7]
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e Aim:
— To provide a Decision Making strategy suitable to determine when and how the robot
should intervene to assist the user
 To achieve this, the robot should:
— be constantly aware about the user and the environment

— act as a prompting system that associates the robot’s awareness about the user with
specific types of robotic actions

— compensate the partial sensor input acquired during the monitoring and modeling of
the daily human activities through vision

* Qur approach relies on Partially Observable Markov Decision Processes (POMDP)*
— POMDPs handle the partial observability of the environment

— POMPDs are prompting systems based on the rule that:
The agent receives observations from the environment and decides on its actions

[1] Pineau, J., Thrun, S.: High-level robot behavior control using pomdps. In: AAAI 02 Workshop on Cognitive Robotics. Volume 107. (2002)
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e POMDP basic principles:

State space: Determines the condition of the environment

Actions space: Comprises the set of actions that the agent is able to perform so as to
interact with the environment

Observations space: Encloses the agent’s perception input from the environment

Rewards: The restrictions space imposed by penalizing or endorsing specific agent
action given the environment state

e POMDP-based approach for a proactive domestic service robot (e.g. RAMCIP) :

States correspond to the robot alert levels about the human and the environment

Actions comprise the set of robotic actions that the robot is able to perform so as to interact
with the human and the environment

The robot intervention actions are associated with the robot’s levels of alert about the human
and the environment
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Our POMDP-based decision making approach takes into account:

— The state space based on robot levels of alert about the human and the environment
e High levels of alert require engagement with actual robot task e.g. fetching tasks
¢ Medium levels of alert require engagement with communication tasks e.g. dialogue
¢ Low levels of alert require monitoring of the human e.g. tracking and activity recognition

— The action space; actions triggered based on the current state of the robot and context
e Robot task planning (navigation, manipulation, grasping, ...
e Robot communication (dialogue, User Interphase, Augmented Reality display, ...)
e Robot monitoring (vision based human & environment tracking, activity recognition, ...)

bservation
Probabilities
1

A POMDP model is produced based on the
principle:

— Observations tend to increase the levels of
robot alert

— Actions tend to decrease the levels of robot alert

Observations Space

A policy graph is computed: 4 < B
— Outlines a sequence of robotic actions for the g \ e
denouement of the assistive scenario B mpriese | e °
= Monitoring Actions Space
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* POMDP model generation (Novel in RAMCIP)

— FSM diagrams have been created as maps that constrain the POMDP models for the RAMCIP use
cases

¢ Transition probabilities among directly connected states are modeled with increased values normalized to the
total number of states in the FSMs

e Observation probabilities among linked robotic actions are also explicitly declared with increased values and
the rest observation probabilities receive uniform values

e Rewards:

— Increased positive values assigned for the transition from high to low states

— Negative values are assigned for the transition from low to high states

* Partial observability trick (from FSM to POMDP):

e The produced policy graph resolves the assisting scenarios irrespectively the state that will be
initiated

e Additive value: the system tends to transit in states of low level of robot alerts

e The FSM is the ideal scenario; the current design can resolve the use cases by simultaneously
considering the probability of appearance of all the observations
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e Exemplified RAMCIP Scenario

Assistance upon detection of abnormalities

related to electric appliances

during cooking

e FSM state diagram:

e Blue: Task actions A;

Communication

actions A,

* Green: Monitoring actions A,,
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POMDP design principle in RAMCIP

Levels of Robot Alert |

Actions

[ ] [ ] [ ]
] Exe m p I Ifl ed RAM CI P Sce n a rl O |High  |Medium |Low | Task | Communication |Monitoring
State-3 |State-2 |State-1 |RTP1: Robot|Dialogl: Robot|Object-
navigates to the|communicates Detection:
parking position |with human|The SW com-
suitable to mon-|about some miss-(ponent  suitable
itor the state of|ling objects and|to detect and
appliance asks if it should|recognize small
PO M D P d esi n fetch them objects
g State-G |State-5 |State-4 |RTP2: Robot|Dialog2: Robot|Large object
navigates to the|communicates detection: The
. parking position|with human|SW  component
Conce ptual grouplng Of States suitable to mon-|about forgetting|suitable to recog-
itor the cockinglto turn off an|nize the state of
. . . activity appliance and|large articulated
Clustering of robotic actions asks i it shouldjobjects
close i
State-8 |State-12 [State-7 |RTP3: Robot|Dialog3: Robot|Registry: The
plans the actions|informs the hu-[SW  component
for navigation|man that it will|suitable to regis-
° Table on the right: a.nd man‘fpula— o) 1115.mipulate ter the incidents
tion of appliance |the appliance
. . State-15 |State-14 [State-9 |RTP4: The|Dialer: The|Parking Posi-
— Mapplng from FSM dlagram to POMDP robot fetches the|robot failed toltion: The SW
missing objects |[tuwrn  off  the[component suit-
e Level of robot alerts (States) appliance  andjable to switch
notifies for|the  robot in
° Group of robotic actions (Actions) external help monitoring state
where the human
and environment
are observed
— —_ State-10 [— — —_
— — State-13 [— — —
— —_ State-16 [— — —_
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Update =
virtual User Model T
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1‘ POMDP-based
Assistance — .
Human State —> Decision s RG[?DtIC
Maker . Actions
ADM

— Robot State — 1 Tlt
CDM
Environment : Eli.z:‘zrrenm:ommumcatlon
""' State —

Hierarchical map
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ADM

=
State-1 4 . SIS
monitoring activity u ‘
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Applications

e Professional service robots
@agile manufacturing
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Robot perception in learning by demonstration tasks
e Key challenge:
Hand-object detection and tracking in 3D

...through commercial RGB-D sensors
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e Input: RGBD data from common commercial sensor

e Object Detection (6DoF pose) is performed based on sparse auto-
encoders for feature extraction and Hough Forests for classification

e 3D CAD models are employed for both training the object detector and
performing hand-object tracking

— 6 DoF for the models of the assembly
parts

— 42 DoF for the hand models

e Coarse hand detection of an open
configuration is performed
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e Hand-Object Tracking implementation using Particle Swarm Optimization
(PSO)

— Detection results are used for
initializing the tracker

— Building upon existing approaches
on hand tracking in order to
perform joint hand — object
tracking

— Addressing deformable objects,
as well

— Optimization Time: 0.6 sec per
frame
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Key-frame information stored in

General information:
Scenario id and current step
Object(s) id involved in the demonstration phase
Relative timestamp

Kinematics & Motion information:
Object pose coordinates (position & orientation, 6
DOF)
Hand pose (42 DOF)
Semantic information:
User defined corresponding to assembly states, e.g.
grasp, align
Automatic system suggestions, e.g. aligned axes
Dynamics information:
Forces derived from the kinesthetic learning
Grasping contact points
Object deformation characteristics

72

- <KeyFrame xsi:schemalocation="http://www.SARAFunXML.com

Learning by demonstration

key-frames extraction

Key-frames:
Important states of the

demonstrated assembly
Folding Assembly Example

XML format

<?xml version="1.0" encoding="UTF-8" standalone="true"?>

SARAFun_KeyFrame_XmlSpec_v02.xsd" xmins:xsi="http://www.w3.0org/2001/XMLSchema-
instance" xmins="http://www.SARAFunXML.com" t="25.4" idx="1" id="0">
- <CurrentAction id="assembly.mpg">
<DescriptionPutting one object over the other</Description=
- <InvolvedObjects>
<Object id="0Obj1"/>
<Object id="0bj2"/>
</InvolvedObjects=
- <VisualFeedback>
- <CameraSensor id="RealSenseF200">
<FrameRange fileList="RealSenseF200_Sequence.xml" idxLast="210" idxFirst="30"/>
</CameraSensor>
- <CameraSensor id="Xtion">
<FrameRange fileList="Xtion_Sequence.xml" idxLast="220" idxFirst="40"/=>
</CameraSensor>
</VisualFeedback>
</CurrentAction>
- <Objects>
- <Object id="ObjA" name="Mobile Phone PCB">
<MeshFile>mobile_phone_pcb.obj</MeshFile>
- <PoseState>
<Position z="-0.36945" y="-0.0175897" x="-0.125605"/>
<YPR rotz="-1.73068" roty="-0.679461" rotx="0.0018003"/>
</PoseState>
<Deformation>=NotYetDefined </Deformation=
</Object>
- <Object id="0ObjB" name="Mobile Phone Case">
<MeshFile>mobile_phone_case.obj</MeshFile>
- <PoseState>
<Position z="-0.317434" y="-0.0832089" x="-0.0241354"/>
<YPR rotz="-0.0524788" roty="0.0192357" rotx="-0.723375"/>
</PoseState>
<Deformation>NotYetDefined </Deformation=
</Object>
</Objects>
- <Instructor>
- <Hand id="LeftHand" name="Instructors left Hand">

12th of April 2018

SARAFun
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e Key-frames: Important states

of the demonstrated assembly
— Finite State Machines (FSMs) or Behavioral Trees (BTs) employ the extracted Key-

frames and their information to automatically generate the robot’s assembly program
Proposed Key-frame extraction approach [1]

— Employing hand-object tracking in 3D for kinematic information extraction and
automatic Key-frame identification based on semantic graphs from image sequences

e Extending past approaches focusing on 2D RGB images [2]
e Detecting Key-frames as structural changes of the semantic graph

e Post processing (and instructor’s feedback) for identifying the assembly state (e.g.

grasp, contact, etc.) corresponding to each Key-frame for construction of the
assembly FSM or BT

[1] Grigorios S. Piperagkas, loannis Mariolis, Dimosthenis loannidis, Dimitrios Tzovaras:Key-frame Extraction With Semantic Graphs in Assembly Processes.
IEEE Robotics and Automation Letters 2(3): 1264-1271 (2017)

[2] Aksoy et al. Learning the semantics of object—action relations by observation.” Int. Journal of Robotics Research 2011, 73
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Proposed method: Semantic Graphs?

e Hand and objects segmentation
— Using output from tracking module

e Scanning of each labeled input image
horizontally and vertically, to count the
relations between objects and/or hands

— The sequence is analyzed semantically, by
labeling the graph edges as

“absent -11”, “not touching-0”,
“touching-2” and “overlapping-1”

e Construction of semantic graph

— compressed graph of derivatives of
actions/states which define the core of the
sequence

[1] Grigorios S. Piperagkas, loannis Mariolis, Dimosthenis loannidis, Dimitrios Tzovaras:Key-frame Extraction With Semantic Graphs in
Assembly Processes. IEEE Robotics and Automation Letters 2(3): 1264-1271 (2017) 74
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New features using 3D information from tracker

Novel modeling approach in 3D, based on ellipsoids
e 3D Ellipsoids are automatically fitted to the objects’ CAD models, at initialization stage

Minor

M edium
AXis
e Solution of Minimum Volume Covering Ellipsoid problem, by exploiting a Dual Reduced
Newton convex optimization algorithm, yields a precise ellipsoid for each object
e Processing of manipulation actions is now processing of relations between ellipsoids in 3D
— using 3D pose and position of objects/hand estimated from hand-object tracking algorithm
— 2D rendered images are also employed
e Analytical computation of free margin between ellipsoids: ability to track touching or
overlapping in 3D
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Semantic Graph definitions
using the new 3D features?

e 5 node labels

0: Background

1: Right Hand

2: Assembly Part1
3: Assembly Part2
4: Left Hand

e 11 edge labels indicating

No relation

Touching

Overlapping

Alignment

Combinations of the above

Learning by demonstration
automatic key-frame identification

Iiggles Relations between nodes n; and n;
0 i,J nodes present — No relation between them
1 i overlapping j
2 i touching j
3 Ellipsoid’s i major axis is parallel to ellipsoid’s j selected axis
4 Ellipsoid’s i medium axis is parallel to ellipsoid’s j selected axis
5 Ellipsoid’s i minor axis is parallel to ellipsoid’s j selected axis
6 All ellipsoid’s i axes are parallel to selected ellipsoid’s j axes
7 Ellipsoids i and j are touching and have one axis parallel
8 Ellipsoids i and j are touching and have all axes parallel
9 Ellipsoid i is overlapping j and they have one axis parallel
10 Ellipsoid i is overlapping j and they have all axes parallel
11 i or j is absent from the current frame

[1] Grigorios S. Piperagkas, loannis Mariolis, Dimosthenis loannidis, Dimitrios Tzovaras: Key-frame Extraction With Semantic Graphs
in Assembly Processes. IEEE Robotics and Automation Letters 2(3): 1264-1271 (2017) 76
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Demonstrated Scene Frame Corresponding Semantic Graph

Right Hand
1

2 - Toug

Assembly Partl
2

3 - Aligned

Qverlapping

Background
0
=Overlapping

1 {Overlapping

ajor AXis

Assembly Part2
3
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using only 2D information method extended to

3D using ellipsoids

Extracted semantic graphs Extracted semantic graphs
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Parallel axes configurations can be detected in the 3D case

using only 2D information method extended to
3D using ellipsoids

Extracted semantic graphs Extracted semantic graphs
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nstitute
BN
Parallel axes configurations can be detected in the 3D case
using only 2D information method extended to

3D using ellipsoids

Gray edges
indicate

parallelism

Extracted semantic graphs Extracted semantic graphs
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ﬁb Learning by demonstration
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Erroneous touching or overlap detections can be avoided in the 3D case

using only 2D information method extended to
3D using ellipsoids

Extracted semantic graphs Extracted semantic graphs
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ﬁb Learning by demonstration

Information

Technologies automatic key-frame identification

Institute
B 0200

Erroneous touching or overlap detections can be avoided in the 3D case

using only 2D information method extended to
3D using ellipsoids

Green edge
indicate
overlap

Gray ed
indicate
parallelism

Extracted semantic graphs Extracted semantic graphs
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Automatically extracted key-frames in 3D based on changes of graphs

No touching Hand - Objl touching Objl - Obj2 1 axis parallel

Objl — Obj2 3 axes parallel Objl — Obj2 overlap Hand not touching
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Key-frame Extraction Evaluation

« 14 assembly demonstration experiments o Mean
T Teigytane oy cvsoes IR oo
 Average number of extracted Key- 184 10 8 6.1 (10.0) EE
frames o 24 11 7 1.6 3.0 (4.8)
+ Automatic: 9.6 BE 1 10 7 1.4 5.4 (7.3)
* Manually: 7.3 _ ] 13 6 7 09 3.2 (3.9)
* Average ratio rxs between automatically e 28 10 7 14 114 (190) 2
vs manually extracted Key-frames: 1.3 D 164 5 8 0.6 06 (12) [ua
» 2 additional Key-frames extracted by the 159 8 7 11 53 (1100 [ R
sysftem (object’s orientation) m 206 11 7 16 8.0 (12.8) “
* Mean distance between manually and B 22 i ; 21 33 (63)
automatically selected key-frames B 8 o 8 11 46 (86)
" Tecorden sequence | o B 17 16 87 (138 |G
«  Average distance of only 5.3 frames in a 183 ] 168 7 7 1 4.1 (7.9) “
frame sequence E] 188 7 1 6 7.3 (11.2)
* The system extracts almost the same B 212 8 2.1 (4.3)
R TEEE
« The extracted frames are very close to ==

those manually selected by the teacher
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Applications

e Service robots @field/construction sites

August 2019 85



G

. Field service robots
Information . . .
Technologies @field/construction sites

Institute

e Autonomous subsurface mapping can be essential for many
applications:
— Landmine detection
— Structured utilities detection
— Buried infrastructures detection

e Current situation:

— Semi-automatic procedure

— Manual data collection

Hmm ] 1: “y
20 @00 @
\

9
e [

— Data interpretation from experts

e Semi-automatic annotation of the subsurface profile
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. Field service robots
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e Proposed approach [1]

— 3D underground mapping with a
mobile robot and a GPR antenna array

e Joint surface/subsurface mapping
method overview

— Surface

e SLAM and constraints-based outdoor path planning, robot navigation

e Graph-based stereo visual odometry

e General graph optimization (g20) for loop closure and localization refinements
— Sub-surface

e GPR data collection, signal pre-processing and B-Scans formulation

e Underground utility detection through B-Scans processing

e Underground map creation, coupled with surface map

[1] G. Kouros, I. Kostavelis, E. Skartados, D. Giakoumis, A. Simi, G. Manacorda, D. Tzovaras, "3D Underground Mapping with a Mobile

Robot and a GPR Antenna", 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018), Madrid,
Spain, Oct 2018



ﬁil Vision-based Robot Navigation

Information . .
Technologies For outdoor/field robotics
Institute
N I |
Step #1

» Navigation of a mobile robotic platform in outdoor environment

* Aim: Autonomous robot path planning and navigation

Core Technologies utilized
« Autonomous exploration of outdoor environment through
— SLAM and constraints-based outdoor path planning
— Stereo camera -based visual odometry for robot localization

— Model Predictive Control (MPC) —based robot navigation



m Underground mapping

Information
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e Along the rover motion,
data are collected from
the GPR antenna

Electromagnetic pulses

Electromagnetic pulses
Traveled Distance

e Collected A-Scans are
registered to the
localization graph

e B-Scan formulation A-ScanS: 4o om
. \
corresponds to straight
routes and is

constrained by the > Nap Grapn
’ 1) (2) (1) (12) - ——-.
robot’s path a1 ) @ Qi =L
ZT_» o ° -------
B-Scan Assembly via Map l» A-Scan

[]
Graph Line Segmeniation | BEH | |
and Uniform A-Scan M |:| H}H |:| a 5 6 " 5 ‘E’ Ly B-Scan
Distribution and Resizing




m Underground mapping
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Hyperbola patterns detection
on B-Scans

e Two-step segmentation

e |solation for salient regions

e Multidimensional HoG features

e SVM classification for hyperbola
detection




m Underground mapping

Information

'{echnologies 3D reconstruction of underground environment
nstifute

e Each A-Scan is registered to a
node of the localization graph

e The depth of the detected apex
is calculated using the
propagation velocity vin the
medium

(tryy, tryy)  (tre, try)

(PXapyz) 2 X
. \\ 22 = trzz -V tl'py2 / 2

(p,,pYa)- '
zy=1tr,y-vitr, /2

e Apexes also inherit the X z
transformation from the I g X
. Channel 28
respective graph node

e The output is a sparse point
cloud from the subsurface
utilities
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. PR
|
Identification of structured shapes in the ]
subsurface Rotared
v Hyperbola
Strict Detection
e Further processing on the point cloud Detection !
stemming from the hyperbola apexes ’ 3D Registraion
d ete Ct i on 3D Registration l
Statistical Cutlier
Removal
e Qutliers removal and density-based
spatial clustering omdoudwin | [ Pomdeud win
Spatial
. . . . .. . Clustering S%l;surif:ce
e Registration with primitive geometrical = L[ e . pring.
shapes to isolate pipes, manholes etc. oo Detocton Loy
and Interpolation
!
Pipe Merging And
Interpolation
l Detected
Pipes
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(a) Robot trajectories; annotated pipes

shown in red
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(c) Outliers removal & clustering (d) Utility mapping
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BADGER Project: http://badger-robotics.eu/

[1] G. Kouros, I. Kostavelis, E. Skartados, D. Giakoumis, A. Simi, G. Manacorda, D. Tzovaras, "3D Underground Mapping with a Mobile
Robot and a GPR Antenna", 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018), Madrid,
Spain, Oct 2018


http://badger-robotics.eu/

ﬁb Conclusions
Information Al-Enhanced Computer Vision
Technologies .

Institute for Service Robots
B 000

e Future service robots are expected to provide assistance in a wide
spectrum of diverse domains

— at home, acting as personal, assistive service robots

— in agile manufacturing, exploration, construction applications, and
much more

e Technologies that advance robot autonomy, endorsing robots with better
action and awareness are necessary

— Robot perception, cognition, navigation and human-robot interaction
capabilities play a key role in service robots

e Al-enhanced computer vision techniques are key elements in this
scope
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m Conclusions

Information Al-Enhanced Computer Vision
Technologies .
Institute for Service Robots

e Key challenges for future service robots operating in real homes, agile
manufacturing, field/construction applications

— Environment mapping

— Object recognition

— Human tracking and activity recognition

— Human-object interactions tracking for learning by demonstration
— Affective human-robot communication

— Autonomous navigation, localization and mapping

— Robust, context-aware decision making

e Al-enhanced computer vision can help towards
Methods robust enough for applications in real environments
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Dr. Dimitrios Tzovaras

Dimitrios.Tzovaras@iti.gr
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